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Let us go forward and understand further how do functions behave near x = 0. Whenever we 

have to plot a function, we should understand that certain special points, for example the 

minimas, the maximas, x equal to 0, even when we are plotting by hand we need to capture the 

behaviour of those functions over there properly and even if you are not plotting, you need to 

understand how does a function behave near x = 0.  

Because by further understanding, you can infer many things about the function, if you have an                

understanding about how do the function behaves near x = 0. So in this exercise, we are asking                  



can you plot a function √x, x, x2, x3, x4 etc for x > 0 on the same plot or graph on the paper. So                         

can you try to do this on a paper, pause the video for a minute.  

Think about how these functions are going to look on the paper, can you plot it? How you have                   

to keep in mind how they behave near x = 0 and that is the key here. All these functions have                     

different behaviour near x = 0. So can you capture the gist of plotting this by going back to paper                    

and pen and try plotting it. And after that we will execute this in Mathematica and see what it                   

looks like.  

Okay let us go back to Mathematica and plot this, so I want to plot √x, unless x is positive, so x I                       

can make it from 0 to 2, you can plot it, this is what I get. Let me add more functions to this.                       

Ofcourse y = √x is same as x= y2 that means it is a sideways parabola. So x is linear, that is the                       

orange curve let me go ahead and add PlotLegends over here.  

Let us go ahead and add more functions, so you see the behaviour: how √x behaves at near x = 0                     

and how x behaves, x is a linear function it goes like that, √x varies much more slowly compared                   

to this. This goes fast, on the other hand this one rises up fast for small x and then for larger x it                       

does not rise up fast enough. On the other hand the linear function, it is slow compared to √x for                    

x < 1.  

But eventually picks up the pace and becomes faster than √x and they intersect at x = 0 and x = 1                      

and for that matter all these functions will meet at x = 0 and x = 1 because all these function are                      

0 at x = 0 and they are all 1 at x = 1. Therefore they all are going to meet at this point and this                          

point but so their behaviours would be different before and after.  

Now, this is not a news for you, so let us go ahead and quickly check it out. Adding a quadratic                     

function, a cubic and a quartic. Notice the difference near x = 0 let us zoom into the x axis a little                      

bit more and make it 1.2. The higher powers of x are suppressed for small x but they are                   

dominant for large x, when x is much greater than 1 or bigger than 1, the higher powers are more                    

dominant and when x < 1 the higher powers are suppressed compared to the lower powers.  



We can go ahead and and try more things we can add x1/3 also and we can anticipate how does                    

x1/3 goes. x1/3 will dominate √x over here and then for x > 1 will be subdued by √x. Let us check                      

that hypothesis, yes indeed it is true, the blue is x1/3 and orange is √x.  

So √x is subdued by cube root over here but eventually √x subdues over x1/3. So this is                  

understanding the behaviour of functions near x = 0 and this is something very important when                

we are plotting we should know. When you look at a function, we should have an anticipation of                  

how the function is going to behave for small x and large x? And when we plot it actually either                    

by hand or using a computer like what we are doing over here we should cross check our                  

understanding.  
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Let us go ahead and do an exercise. In fact this exercise is broken into 3 parts, let us talk about                     

radicals and logarithms. So the first part of the exercise is to plot x, √x, log(x) and find out where                    

do they intersect, we already know that x and square root of x intersect at 0 and 1, where does the                     

root of, log(x) intersect with these functions. Plot them and find out how they behave at small x                  

and large x.  

This is an exercise you can very easily do computationally because you know how to do that. So                  

let us go ahead and plot that and what is important here is how do you want to compare log(x),                    

which is also also a built-in function and this log is built-in function Mathematica starting with a                 

big L and we will set the range since log(x) is defined only for positive x, we are going to set the                      

range from x goes from 0 to let us say 2.  

And there we go, let me add the PlotLegends but you can guess which one of them is the log                    

function. The green one is the log function, okay. You see the log(x) does not intersect with these                  

two over there, the reason is that for large x, x is going to go to infinity much faster than log(x)                     

and the √x is also going to infinity much faster than log(x).  

In fact log(x) goes very-very slowly, if you do not believe me go ahead and plot it from x equal                    

to 0 to 20 and you will see the behaviour. The orange curve is going faster than the green curve                    

and so on, so you can increase the range further and orange and the green are never going to                   



cross. The point of this exercise was to notice that √x and log(x) never intersect. So there is no                   

root of the equation √x = log(x).  
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Let us go to the second exercise, we are going to plot x1/3 and log(x) and see if they intersect at                     

any point. So we want to plot x1/3 and log(x). You can say x is between 0 and 2, I do not know                       

the answer of this question you may not know answer this question but by plotting or visual                 

thinking we can very quickly find out if that is happening or not and it looks like I have plotted, I                     

have taken the range of x from 0 to 3 over here.  



It looks like that they might intersect, so let me go and increase the range, okay. Increase it                  

further, there we go, they intersect somewhere over there, okay. Now we can go and solve this                 

equation x1/3 = log(x), equate this and that okay and solve it either analytically or numerically,                

whichever way you like. But the more important question is that √x never intersected with               

log(x).  

But cube root of x intersects with log(x), so what is the radical, what is the power of x for which                     

you get the first time as 0 for log(x) and square root of x. That is one question, the second                    

question which I find more interesting over here is that you know that x1/3 will eventually                

dominate log(x) because log(x) is a very very slowly growing function. So x1/3 will eventually               

grow faster than log(x).  

But over here what do we see, we see that log(x) is subdued, log(x) is subdued x1/3. In case you                    

are confused let me add PlotLegends, so we see that log(x) has subdued cube root of x however                  

we know that as x becomes very large this has to dominate. So how do we see that, let us go                     

ahead and increase its range to may be, let say 45 and that still you see on over there curving that                     

mean they are coming closer.  

So let me go ahead and increase this further, there we go. So somewhere around 90, they cross                  

again and beyond this beyond this you see log cube root of x will dominate log(x). So there are                   

two crossings for these functions, x1/3 = log(x), there are 2 roots of this equation, one a small root                   

where cube root of x was dominating log(x), then eventually log(x) started dominating cube root               

of x and finally cube root of x start dominating log(x) again.  
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So the third exercise actually asked you to find out using visual thinking, just by visually                

plotting, figure out visually, find the solution of the transcendental equation x1/n = log(x). So we                

know that x1/2 = log(x) has no solution, x1/3 = log(x) has two solutions. So there is some value of                    

n between 2 and 3 for which this equation has got exactly one solution.  

The question is what values of n there are solutions to this equation when do you have exactly                  

one solution. So we need to find the value of n for which we have exactly one solution and then                    

after that what happens is that we are going to always have two solutions. So in order to solve                   

this exercise here is a line of code, this is something we have already executed, so let me go                   

ahead and execute this line of code.  

So what does this line code do is: we use Manipulate command to plot x1/n and log(x) and we                   

vary n. So we start with n = 2 there is no solution, so the initial value of n we have chosen is n =                         

2. You can go make n smaller and we will see there is no solution, if you make n large beyond 2                      

there is no solution and then somewhere there, there we go. Now there are two solutions, so n is                   

2.78 we see there are two solutions and if you make it slightly smaller there is no solution.  

So somewhere on 2.7, just start to see that there is a solution that there is exactly one solution                   

somewhere around 2.7 whether it is 2.71,72, 73 that we have to work out but you see at 2.8 we                    

have two solutions and 2.7 looks like this, there isn’t any solution let us go back and fix this                   

range, this is 100 so okay. So let us go back, go forward and see how it works, 2.8 there are two                      



solutions, 2.93 there are two solutions and this distance between the two solutions keeps on               

increasing.  

So if I go ahead and make this 200 and again go to n = 3, as I increase n now these solutions                       

keep on going further and further away. In fact the bigger, the larger solution is receding                

very-very fast. Okay so let us find out that point where we exactly have one solution. Now                 

visually we have figured out it is somewhere closer to 2.7 not exactly 2.7 somewhere closer to                 

2.7 may be somewhere greater than 2.7. Let us go and solve this problem analytically and find                 

out where is that solution.  

So here is my analytical solution, to solve this analytically, let us say that exactly one solution                 

happens for n = n0, so there is one solution exactly for n = n0 and say that happens at x = x0, so                        

the root is x = x0. Then for n = n0 and x = x0 we have both the functions evaluated to the same                        

value and the derivative is also evaluated to the same value.  

Because if they are just touching, for example in this graph over there at 2.7 when they are just                   

touching the derivative of the two functions, this and this are matching, that is x1/n and log(x)                 

their derivatives are matching and they also have the same value. So that is what we are going to                   

use to find out that root. So therefore we assume that the root is x0 and their corresponding                  

value is n0.  

So the first condition says that x0 must be equal to the log(x0), the second condition says that the                   

derivative should also match at those two points. So let us go ahead and and calculate the                 

derivative, d of x1/n0 over dx evaluated at x = x0 is 1/x0 which is shown over here, which                   

simplifies to x01/n0 = n0 which you can also write as log(x0) = n0 log(n0).  

Okay, now from the second equation we get the condition x01/n0 is n0, so if we substitute that in                   

that equation we get, if we take this equation and substitute that into the first equation over here                  

this will become n0 and log(x0) we have calculated over here which becomes n0 log(n0). So we                 

are eliminating from this equation, we are eliminating x0 in favour of n0 

On from both the left hand side and the right hand side when we do is that we get this equation                     

n0 is equal to n0 log(n0) which says that log(n0) must be equal to 1 and that tells you that n0 is                      



the Euler constant E which has a value of 2.7, it is close to 2.7 its exact value we can work it out                       

numerically and we can also work out x0 , x0 is log(x0) is E and therefore x0 is eE.  
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We can numerically work these things out, so to work out things numerically we use a numerical                 

function. E is the Euler constant, in Mathematica capital E is the Euler constant we evaluate, N is                  

a numerical function, so doing N[E] gives me the value 2.718 and eE is the value of x0 which                   

when I evaluate I get 15.1543. So let me go back to my plot here and put in 2.718 and there we                      



go, that is the root of this equation for n = 2.718 we have exactly one solution log(x) and x1/n                    

meet exactly at one point.  

So by visual thinking before even solving these equations we were able to find out the                

approximate solution of this equation, we were able to develop some intuition of this. For this                

problem we were able to understand when there is no solution for x, for this equation and when                  

there are two solutions for this equation and then doing an analytical algebra we were able to                 

exactly find out the solution.  

But we can very quickly get quick answers by simply using visual thinking, by simply plotting in                 

various ranges changing the value of n, using the manipulative command makes it really easy, to                

vary the parameters and develop some understanding about the problem. So that was the main               

focus of today’s lecture, we will continue with some more examples of visual visual thinking in                

the next one. 


