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Hi guys. So, we started our discussion of Random Walks in the previous module and so now we 

want to see how random walks are connected to the diffusion equation. So, I have already made a 

sort of a comment in passing that you know this result that the average distance covered after N 

steps is the typical distance is like . And so, this is in fact, true of you know diffusive 

motion. And so the general terminology for these kinds of motions is diffusive motion as 

opposed to ballistic motion.  

So, if, typically you are taking N steps and moving as an order of N then it is called ballistic 

motion. And if it is going as  it is called diffusive motion. There are, of course, you know 

based on this terminology, there are other kinds of random walk motions where you can have 

some diffusive behaviour or super diffusive behaviour. These are all you know more sort of 

sophisticated phenomena which do happen by the way, where people are interested in this but the 

main.  
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So, the landmark points in some sense are ballistic motion and then with respect to ballistic, you 

compare and you see that random walks give you  behaviour. And so, in this module we are 

going to see how this connection between random walks which I described last time, discreet 

random walk and how one can make a contact to a differential equation, which partial 

differential equation which is actually that of diffusive motion. That is the agenda for this 

module. 
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Okay, so what is the procedure? We must take a continuum limit. So, you can in principle take a 

continuum limit in x and in t. So, we will do this particular case and you are free to play with in 

all four possibilities. We already did the discrete in space, discrete in time problem. You can keep 

time discrete and keep make space continuous or you can make space discrete and time 

continuous. Or you can make both of them continuous like we are about to do now.  

So, let P(x,t)be the probability density of finding the particle at position x at time t. So, now it is 

a probability density. So, you have to integrate in some region in time to get a probability. So in 

the time step, , the particle undergoes a change, if it were located at x(t), it is going to be at 

x(t) + l(t) after this small interval of time delta t has elapsed. And now but the key point is that 

l(t) is a stochastic random variable. It is drawn from some distribution W of z.  
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So, we will just assume that this random variable l(t), this distribution has mean 0 and variance 

. You are not going to assume anything specific about the nature of distribution. Let us say 

that it has some mean 0 and variance . To find the probability distribution, . So, 

initially it had a certain probability distribution.  

Now, you can still ask what is a probability density of your particle being at x at time t +  we 

will need to integrate over all space in the previous step right. So, we could have arrived at the 

position from anywhere. Theoretically, it is possible. Of course, it is more likely that it has 

moved into that region from a nearby point but you have to take care of all possibilities. So, you 

will have to integrate over all space weighted with an appropriate probability for the jump as 

follows.  

So, you have, suppose it were at some positive x - z at time t. The probability that it were at x - z 

at step t.W(z). So, this W(z) comes from now it is telling you that your random variable, the 

length of this random variable could be anything basically. So, we are taking it to go from minus 

infinity all the way up to plus infinity. Although it is unphysical to make this a very broad 

distribution.  

So, typically one is thinking of you know in the case of the discrete random walk, we say it is 

either + or -1. It is a bimodal distribution. But you can have other kinds of distribution. So, it is 

not as you will see. The main results of this discussion will actually not depend too much on the 

precise form of this distribution. It will just get washed out. 

However, I mean perhaps there is some pathological distribution you can come up with and you 

can try to mess up this analysis. But the main point here is that it is not really of interest. 

Physicists world if you think of it as a distribution which is a reasonable distribution. You can 

take l(t) to be sort of peaked around a certain mean and that mean is 0 here. It is equally likely to 

be going to the right or to the left and it has a spread around it. It has a variance . 
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So, the typical distance it covers in one step is actually a. Equal to the right or to the left. Okay, 

so if you do this, then you have . 

(Refer Slide Time: 6:07)  

 

Now, if you do a Taylor expansion in z and keeping terms up to second order, you can write this 

as . So, I am just doing a Taylor expansion and keeping 

terms up to second order. Yeah, so next you must invoke some features of this distribution W(z). 

It has mean 0 and variance . 

Now, if you take  to be small, right so that is coming in a moment but first of all, let us see 

that you know this second term actually vanishes. Why does it vanish? It vanishes because 

 comes out and then the mean of z is actually just 0. So, there is no contribution from the 

second term, only the this square term comes in. So, in some sense, we are keeping this P(x,t) of 

course and then we are keeping the next the lowest order which survives because this first order 

term will vanish. And so that is the Taylor expansion that we are doing.  

P(x ,t+Δt)= ∫
− ∞

∞

P(x− z,t)W(z)dz

∫
− ∞

∞

P(x ,t− z ∂P
∂ x +

z2
2
∂2P
∂ x2

)W(z)dz
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And so taking  to be small, you can also argue that  is actually you know 

connected to . So, . So, I have so two independent ways of 

doing this difference. Now, on the one hand, this argument using W gave us this quantity. It is 

.  
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Δ P(x ,t+Δt)

∂P/∂ t
P(x ,t+Δt)− P(x,t)≈ ∂P

∂ t Δt

1/2a2∂2 t /∂ x2



 

And so, if I equate these two different ways of getting this difference then I have 

where . So, for some reason, Mathematica has changed the font here but it is okay.  
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So, in three dimensions, the this is something that generalizes automatically. So, this is what is 

called the diffusion equation. It is a partial differential equation involving a second order 

∂P
∂ t = D

∂2P
∂ x2

D= a2

2Δt



derivative in space and that is just a first order derivative in time.  and this D is 

connected to the variance of this distribution W. And in three dimensions, this generalizes 

automatically to this expression. . And there is another diffusion constant 

associated with this as well.  
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And the general solution of this problem turns out to be a Gaussian distribution. So, it is very 

closely related to the homework exercise that you should have hopefully done based on the 

earlier module where I asked you to take the limit using Stirling's approximation and show that 

the binomial distribution goes to the Gaussian distribution. And so, indeed you can show that this 

P, the solution to the diffusion equation is this Gaussian equation. .  

∂P
∂ t = D

∂2P
∂ x2

∂P
∂ t

= D∇ 2P

1
4πD te

− x2/4D t
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So, whenever you have a dependence of this kind. The distribution of the position at time t going 

in this form in a Gaussian way and particularly, the important point is that the denominator has 

Dt. So, the variants is directly proportional to time. That situation is called diffusive motion.  

And it is seen in a lot of context you know not which apparently appear to be not, nothing to do 

with random walks or anything like that. And even in such context, these kinds of Gaussian 

forms come about. And so then some analysis will reveal that indeed there is some underlying 

random walk behaviour involved.  
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So, you have some homework now to do and what you have to do is first of all just simply plug 

this equation in. I am claiming that this is the solution of this but I have not told you how to find 

the solution. So, one way to believe me is to convince yourself by you know just plugging this in 

and verifying for yourself. So in other words, do not really believe me but actually verify for 

yourself. That is homework one.  

And in fact, there is a way to systematically solve for this problem which you might see in a 

somewhat more advanced course on math methods of or elsewhere there is a Green function 

technique involved that is one way of solving for this. There must be other ways as well. So, it is 

possible to go from the differential equation to the solution but here I am asking you to just take 

the solution which I am claiming is the solution and verify. That is one of them.  

Second is to check that this is legitimate probability density. So, integrating over all time or all 

space, both ways you should check this and it should be normalized. And sorry it is over all 

times. It is over all space. At any given time, the particle has to be at any position in space. And 

as a function of time, it is if the whole probability distribution will change but it it is not clear if 

we integrate over time, we are going to get something. So, it is it is an integration over space. 



Okay and then final thing to do is to make a plot of this and check for yourself what happens as 

you, if you keep on decreasing time. That is an interesting question to address and what about in 

the limit of t going to 0? Is there something very special that will happen. So, this is something 

for you to interpret graphically and think about. That is homework.  
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And so, one comment about this is that there is a very remarkable generality associated with 

these results. The main result I have said before and I am emphasizing again is that the typical 

distance covered in you know N steps actually goes as  and in time t, whether it is 

continuous or whether it is discrete time, discrete space. It does not matter. None of these things 

count. It is just simply this kind of random walk behaviour will give you  or  

dependence. And this is that is why there is generic terminology associated with it and it is called 

diffusive motion. 

And why does it appear in so many contexts and so there is a deep theorem in stochastic 

probability theory which is called the central limit theorem. So, which says basically that if you 

take the sum of a large number of random variables. No matter what the details are of each of 

these random variables and what the distributions are of these individual random variables, the 
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sum is going to actually get a, give you a bell shaped curve. The distribution of the sum is going 

to approach the Gaussian distribution. The limit of very large number of random variables.  

So, there is a rigorous proof for this. It is possible you might encounter it if you take math code 

on probability theory. But it has very important consequences in lots of areas in physics, in 

financial systems it has in certain kind of biological problems and all kinds of other fields.  

And it has, it is one of the favourite theorems of Probabilists and it also appears, for example, in 

error analysis. These kinds of ideas. So, it has widespread use and you will encounter it whether 

you approach it with knowledge or without it, you are going to encounter it in lots of cases.  

The bell distribution is an ubiquitous distribution and hopefully this discussion will help us you 

know whenever we encounter it in the future, we should hark back to this discussion and say 

that, oh okay we had actually have a reasonable understanding of it. That is the goal of this 

module. Thank you.


