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The Monte Carlo Method 

Hi, guys. So, we have been looking at the Monte Carlo method. We have seen a few examples of 

how this works out in practice. So, these discussions have been sort of very strongly example 

based and implementation based. We have not really gone into the theory of the Monte Carlo 

method or why it works and so on. The theoretical aspects would require a substantially more 

involved discussion and would involve more time and so on. Anyway, that is not really the goal 

of this course. 

So, in the same spirit we will continue with some more examples. So, one more example which I 

will discuss in this particular module is that of computing π  by an alternate method. We already 

saw one method of computing π  using an integral and using an important sampling. Now, so 

this the method that I am going to describe here is related to something called the Buffoon’s 

Needle drop experiment.  

So, so this is a centuries old problem which was considered by this person called Buffoon. And 

so, who imagined dropping a lot of pins. And so, you imagine a sheet of paper which has lots of 

parallel lines. It could be you know your whole notebook, for example. And then you drop pins 

of a certain, certain length and then you ask, what is the probability that, you know, this pin 

would cross a line? And what is the probability that it does not cross a line. So, one has to take 

care of you know the various angles present and so on. 

 

And it is possible to do a probability calculation of this and find out the answer. And it turns out 

that this answer is also actually related to π  and in fact there is way to compute π  using, you 

know, you doing this kind of a needle drop experiment repeatedly. You can drop like a million 

pins on top of a piece of paper with lots of lines.  

And I mean, the calculation is somewhat involved. And you have to consider cases where 

whether the you know, the distance between the lines is greater or lesser than the, the length of 



the pin involved and so on. So, the method I am going to describe today to compute π  is rather 

simple and it is it illustrates the philosophy of the Monte Carlo method. So, here we go.  
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Okay. So, the idea is to consider a region which is you know a circle of radius 1 and there is a 

square that encloses this circle, and so you just imagine you know dropping this kind of doing a 

needle drop experiment of Buffoon or somebody else. Imagine that there is a flat surface which, 

you know, which has this kind of a circle of unit radius. And there is a square around it which 

will have length 2 because the diameter of the circle is  2.  

And then you imagine dropping lots of darts or you know if it would be darts if it is vertical. But 

I guess it makes more sense to think of this as a plane on the ground. And then you are dropping 

lots of needles from above. And then you just simply count the number of needles which fall 

inside the circle and evaluate the ratio of the number of needles which fall inside the circle to the 

total number of needles dropped. And of course, the key requirement here is that it is going to be 

a uniform distribution. 

So, every point inside this square of unit of side 2 is equally likely. So, there is no bias for these 

needles. They can be dropped; they are dropped everywhere with the same probability. And if 

this happens, then indeed it is of Monte Carlo theory tells us that the ratio of the number of 

points which are dropped inside the circle, divided by the total number of pins which are 



dropped, it is going to be basically the area of the circle divided by the total area, which we will 

see immediately will give us an estimate of π . 

So, how does this go about? So, probability of this falling inside the circle is π∗ ( radius)2

 which 

is just 1/( Areaof square) , which is 4, right? Because you have a square whose each side is 2 in 

whatever units. So, it is going to be π/4 . 
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Now in practice using the 4-fold symmetry of the problem, we can actually solve this problem by 

considering just the first quadrant. You do not have to, so, what we are planning to do is of 

course do this computationally. It is just impractical to actually drop so many pins Buffon 

experiment style. 

But we have a pseudo random number generator, right. Because we have Mathematica. And then 

we can use this to generate lots of random number as long as they are drawn from a uniform 

distribution in the appropriate manner. We can actually get a very good estimate of π  by this 

method. So, since you can get π/4 , you can also get π .  

And so, to do this, we will just consider one quadrant of this circle. And then perform an 

experiment only inside this and and ask what will be the… so it is going to be just. So, the area 

of the small square now is what? It is going to be, one squared. So, then the area of this circular 



arc, this one fourth of the circle is just π/4  right. So, it is exactly the same. So you still have to 

multiply by 4 in the end. 
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So, here is the code which does this. There is a compact way of doing this whole thing and that 

is. So, as always with Mathematica, you just try to create a table of tables. So, like that is what 

we do here. So, so you say that let us go inwards out. So, if I generate RandomReal. I told you 

that RandomReal for me will get me a random number between, between 0 and 1.  

So, let me look at input here and then I have RandomReal. If I do it once, it gives me a random 

number between 0 and 1. So, I can. I mean, to be. So, I can do this in any interval. So, I can 

specify it like here. 



(Refer Time Slide: 8:04) 

 

So, I can look at what this does if I make a table of this. So, a table of RandomReal. And let say I 

generate a 100 of these and let me make a histogram of this. So, it is giving me a uniform 

distribution between 0 and 1 in this interval.  
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So, actually what I want to do is generate, 2 such numbers and instead of, ya, so equivalently, I 

could have also done it like this. So, I can actually do. So, it gives me a hundred numbers. 
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So instead what I do is I get 2 such numbers. So, why do I need to do 2 and square it? If I take 

two such numbers, it is along the X and along the Y. So, remember I am in the first quadrant. So 

the X value will go from 0 to 1 and the Y value will go from 0 to 1. So, I will generate two such 

random numbers and then I will just square it. 

If I square it, what does it mean? It means I am finding X
2
+Y

2

 right? I am finding X
2

 and 

Y
2

 and then I will total it. I can always do this. Then I can total it. Total will just give me a 

single number. So basically that is, if I find a point which is sum for X is somewhere here and Y 



somewhere here, it is a point like this and the distance from the origin is distance squared is just 

given by X
2
+Y

2

 and that is what I am doing. 

So, this number clearly can go all the way up to 1 plus 1. That is the maximum. So, then you 

would be somewhere here. So, then you ask how many of these points that I generate will lie 

inside this quadrant of the circle. And clearly that will happen whenever this distance is less than 

or equal to 1. Correct? So, what I can do is I can say if RandomReal total this distance is, this 

entire thing, I should put it, enclose it in these kind of brackets.  

If it is less than or equal to 1, if it is less than or equal to. So, that is so you can get the syntax for 

this using Palettes and Basic Math Assistant and you can go to, and you can go to these 

commands here and search around. So, there you go. So, you have less than or equal to. There 

are, of course, shortcuts as well, but you can also do this. Less than or equal to 1.  

Less than or equal to. If this is less than or equal to 1, then you want the answer 1. And if it is not 

less than or equal to 1, then you want to get a 0. So, let us see. So it gives me a zero once. This 

random number was most of the times it is going to give me one because it is more likely. But, of 

course, from time to time we get a 0. And so that is the whole point.  
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So, you can keep on doing this many, many times and that is what is done here. So, you make a 

table of this and do it nMax times and then you count the total. If you sum all this this array, it 

tells you the total number of 1s there. And that is all you want, really. And times 4, because 

ultimately what do we want. We have to multiply by 4. We are interested in π . So, I will 

multiply by 4. And then I have to divide by total number of attempts which is just nMax, and that 

is it. So, that will create for me a another table. I want to generate a large number of these and I 

will call that data set.  
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So, let me do this. So, let me get rid of this Math Assistant. So, now I have this whole thing. 

Timing is just done to keep track of how much time it takes. Ya, so it is evaluating. May take a 

minute. Yes, there you go. So, the answer is, is out there and so you see that it is a histogram. 

And I have a dataset with, with lots of numbers which are you know crowded around this 3.14. 

So, not only have I just got an estimate of this. But it also gives me a histogram in the end. So, it 

tells us how accurately we have determined the value of π using the Monte Carlo method. 
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So, let us actually take a look at what this dataset looks like. It has a large number of quantities. 

Let me just reduce this number. Then you want to get a feeling for what is going on here. We can 

actually start with let us say just a hundred such numbers. And let me evaluate this.  

If I do it, then, of course, it is a little bit more skewed and so it is giving me. So, let us say table 

form. If I do table form, I can go ahead and make this input and I will say table form of dataset. 

So, there you see you got a whole bunch of numbers which are all in the ballpark of you know 

3.14.  



So, I can just simply take an average of all this. Let me just take a mean of this instead of table 

form. Let me take the mean of this. And mean is indeed very close to the value of π  that we all 

already know.  

So, I want you to go back and take this piece of code and work this out for yourself. So, so 

timing is also put in here and you can play this game and see how, how good this value is. For 

example, you can make a plot of you know the mean of this quantity as a function of nMax. 
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So, with just 100, I am already getting a very good value. Let me see what happens if I have a 

1000. If I have a 1000 and then if I do mean of this data set, then it is around the same ballpark. 

So, this is a game that you can play and you can actually do very sophisticated things. You can 

find error bars. You can find out how the convergence is. You can play with you know there are 

2 quantities involved here. One is nMax.  

And the other one is, so there is, so many so many pins are getting dropped. So, and you can find 

error bars using spread around a mean value, using in the histogram and so on. You can do more 

sophisticated approaches. And another useful task would be to compare the results of this 

method versus that obtained from the Importance sampling method using the integral. 



And ultimately, they are all sort of similar in flavour. And so you might expect that the 

computational labor involved and the accuracy that comes out will be sort of comparable. That it 

is a worthy exercise to try out. Okay, so, that is what this small module is about. It is yet another 

example of the Monte Carlo method to compute π . Thank you.  


