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Hello everybody. So, today we are going to continue from ODEs, that we have been looking                

at. And then, so, we will develop a useful alternate picture, you know where we have some                 

qualitative understanding of the systems can be pulled out, from an analysis of the so-called               

phase space picture, right. So, often times, you do not want to solve the full problem in a                  

brute force way. But you just try to extract as much physics out of it, just by looking at the                    

structure of the equations and so on. And so, this is where this analysis comes in.  

And so, we will develop this within the so-called linear system approach, where an, an exact                

solution is possible. So, we will discuss how that happens and we will try to fit into this                  

framework. You know examples which we have already seen. But then, what this does is it                

actually builds a nice platform, on which you know more difficult non-linear problems can              

also be analyzed, along these lines, where it is not possible usually to find a full analytical                 

solution. So, whereas this, the insights from this phase space picture will be very useful.  
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Okay. So, let us say that you have a system of equations involving 2 variables. I have taken 2                   

variables for simplicity, this can be easily extended to more number of variables. So, equal                

to some arbitrary function of x, y and equal to some arbitrary function of g. I am calling it                    

g(x,y). So, where the RHS does not depend explicitly on time. So, we want to develop this                 

phase space picture. 

So, where we just look at; you know, I take any point in the xy plane and ask; what the point                     

is doing there and where is it headed next. Suppose your system were caught at some time t,                  

at some point xy. So, this; what is the time does not really matter, because you are                 

considering a system, where the velocities are determined only by where you are. So, you are                

going to be able to extract a flow of where this system is standing. And then by studying the                   

dynamics of this flow, a lot of very interesting and you know lot of insights can be drawn,                  

you know from a qualitative study of these phase portraits, as they are called. 

And Mathematica has a very useful plotting function, which is you know, we will use this                

thing called Stream Plot. You can play with Vector Plot and how; and and, you know                

basically carry out these kinds of studies. So, what we do is we will just look at the trajectory                   

of this particle, based on the magnitude in that direction of the flow.  
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So, let us look at a very simple example first. Suppose I have a system, where and                  

. Right; so, if you, you can pause the video for a moment and convince yourself that                 

this a problem that you have already solved. What is this problem? Okay; so, now I am going                  

to continue and tell you the answer. So, the solution is of course, first of all, I will write down                    

the solution, which is just  and .(t) A cos(t) x =  + (t)  sin(t) y =  − A +  
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The solution is this, because it is really the harmonic oscillator. You can think of x as the                  

position and y as the one-dimensional speed. Right, it is the 1D harmonic oscillator. A very                



simple problem. If you want to see this, you can write it as . And then you will see                   

this. And so, the way it works is, to find out the trajectory in the xy plane, you want to                    

eliminate this, you know these constants; you, you want to eliminate time basically. 
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So, you want to write it as just functions of x and y. So, then you have . And                   

depending upon the magnitude of A, you are going to get a circular flow. Right; all of this is                   

very nicely visualized, with the help of Stream Plot. So, the syntax for Stream Plot is simply;                 

you must provide the flow, magnitude and the direction here, in terms of these, you know                

these 2 quantities have to be provided inside these flower braces; y comma minus x in our                 

case. So, , . And then you must tell the limits of x, that you are interested in                  

and the limits of y that you are interested in. So, x goes from -1 to 1 and y goes from -1 to 1,                        

is what I am looking at.  
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If I hit ‘shift enter’, then so, there you go. So, you see a nice flow diagram. So, this is what is                      

called the phase portrait picture of the harmonic oscillator problem. So, it tells you that               

basically there is no loss of energy. Right; so, we know this. And the simple harmonic                

oscillator; the system keeps on going round and round, in exchanging kinetic energy to              

potential energy and potential energy to kinetic energy, again and again and again repeatedly.  

And depending upon the, this as a radius of the circle that you are in, is a measure of that                    

amount of energy that is trapped inside this system. Very familiar stuff, but from an alternate                

picture. Now let us look at another example. Suppose I have x dot equal to x and y dot equal                    

to y. So, then again you can solve this equation. And the answer is just x of t equal to A                     

times… They are uncoupled. So, and . So, x is going to keep on increasing; y                 

is also going to keep on increasing. 

And so, in fact, . So, that is the, you know when time has been eliminated, so, you     B/A xy =                

get this kind of a curve in the xy plane, which is nicely shown here with the help of this                    

Stream Plot. So, you see that all these, you know trajectories are straight lines, which are all                 

running away from the origin. So, if you let a particle be anywhere other than at the origin.                  

Right so, if you are at the origin, of-course it will stay at the origin forever. But slightly away                   

from the origin, depending upon which direction you are headed in. It is going to just keep on                  

running away to infinity, along a straight line. So, that is what the flow directions are.  
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And then finally we look at the third kind of example, where you have and .                 

So, here, you can solve for it analytically. And so that answer turns out to be; you know after                   

elimination, you get is equal to constant. And here, the asymptotes of phase space               

trajectory are, are the lines; plus, or minus x. 
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And now, you see that qualitatively the the flow is actually quite different from the previous                

case. And so, you see that for long times. If you are in one of these trajectories above, you                   

you typically start from somewhere close to the line , if you are coming in from, if          y =  − x         



you are starting at a large negative time. And for large positive time, you are going to                 

approach the region, if you are… It does not matter in which quadrant you start. It is   xy =                  

eventually going to go to . And for large negative times, you would be very close to      xy =              

the  line. y =  − x   

So, this is what is called the saddle point. So, these are; in fact, these three are very                  

characteristic plots, which represent the so-called stable node, unstable node. And, so this is              

actually a very special type. You know, when you have circles all around, this is an unusual                 

kind of a fixed point. There is a fixed point sitting at the origin. So, I will talk about this in a                      

moment. But just to step ahead a bit, so, there is something called a fixed point, which is                  

sitting at the origin. Basically, if you are at the origin in any of these differential equations,                 

you will remain at the origin forever.  

But if you are slightly away from the origin, in one case, the first case, you are at what it is                     

called a neutral fixed point. It is basically going to keep on being at the same distance                 

forever. But if you are in the second case, you are going to run away to infinity. And the third                    

case, you would run away to infinity, if you are; you know if you are along, a certain                  

direction you are going to run away. But in another direction, you know if you are carefully                 

located along this line; y equal to minus x, then you would actually come back to the origin.                  

Right? So, this is what is called as saddle point.  

And it supposed to remind you of a saddle, which is we put on a horse and you see that, along                     

one direction it is a minimum. But along the other direction, it is a maximum. So, that is                  

where this terminology has its origin. Okay; so, let us make, we will make these notions a                 

little more precise as we go along. But this is just a qualitative understanding of… So, let us                  

move ahead and look at a few more examples. And then we will go into the general theory.  
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Okay, so, linear systems in general, you know with; if I have 2 degrees of freedom, x and y                   

are available. So, I can think of a general linear system of this kind; and                

. a, b, c, d are parameters of your system. So, there is a compact way to write                  

this, in terms of a vector equation. So, . Now this matrix A is of-course a, b, c, d. So,                    

we can ask; what will be the, there is clearly a fixed point at the origin, always. 

When and , for sure, your system is not going to move. Its dynamics is null. It  0x =     0y =                 

is just going to remain at the origin forever. But we have seen that, depending upon this                 

matrix, the precise values inside this matrix A, the nature of the dynamics can be very                

different, around the origin, slightly away from the origin. That is what we are going to work                 

out.  

So, before we do that, let us quickly identify, you know which equations correspond to a                

linear equation. So, any linear equation necessarily has this form; underlying the linear             

equation or the linear system, is the so-called superposition principle. Basically, what it tells              

you is that, if you are able to find 2 solutions, then any linear combination of these 2                  

independent solutions is also a solution. So, this we have seen. And we have surely some                

intuitive idea of this.  
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So, let us quickly go over this question. It is like a quiz. If you wish, so, you can pause the                     

video for a moment and try to answer for yourself. Which of these four systems is linear and                  

which of them are not? And I will give out the answer now. So, the answer is of-course ‘a’ is                    

linear, b is linear. Yeah, I mean in fact, we have already looked at these examples. They are                  

definitely of the form, which is described above. ‘c' is not linear, because is               

involved. So, it is not linear. And ‘d’ is is also linear. It involves x and y. That is okay. 
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And what about e? Is it linear? It is linear. So, this is a place, where a lot people get confused.                     

Linearity and order of the differential equation are two different things. So, linearity has only               



to do with you know, what is the power of your x or . So, in this case, you can just define                      

and then you can recast it in this canonical form. And it is still going to be linear. So,                    

if you had or or something more complicated than that, then it will be     in(x)s            

non-linear. And then the dynamics is generally much much harder to understand. Okay, let us               

move on. 
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So, if you have a general 2D linear system of this kind, it is possible to go ahead and solve for                     

it. So, we know; suppose you have this very special case; and , which is                

uncoupled differential equation, then obviously the solution is just a t and d t. So,          ex =      ey =     

we ask whether the general solution can be of this form, can we take some vector.  
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So, the general solution must be such thing, that just e t times some vector. Is there some                  

special direction, which will still yield such simple solutions? And so, it turns out that when                

we make this as an ansatz and plug this into our differential equation, you know these                

vectors, we actually get a matrix eigenvalue equation. It becomes an eigenvalue problem. So,              

as you can see, if you plug this x = e t v , into your original problem; , so, is                     

of-course is going to give you e t v . And then if you plug this, you really have to solve                     

for A v =  v. 
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So, v is nothing but the eigenvector. And is the eigenvalue. So, if you can find and if                    

you can find all the v’s and the is corresponding to them, basically you would have solved                  

this problem. Let us go about doing this systematically. So, the eigenvalues of the              

2-dimensional matrix are conveniently expressed in terms of the trace and the determinant of              

the matrix. 
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So, it is just a simple algebra. If you have not already seen this, I urge you to go back and                     

verify this for yourself. So, if 1 and 2 are the eigenvalues of your (2 X 2) matrix, you can                    

write this as 1 = . This is nothing but the root of a differential equation.                

You can verify this, solve this for yourself and check this. 𝜏 is the trace of the matric and 𝛥 is                     

determinant of the matrix. 2 likewise will be just .  
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Now if 𝜈1 and 𝜈2 are, I guess we have called it v1. So, that is fine. So, 𝜈1 or v 1; whatever you                       

want to call this; are are respectively the relevant eigenvectors. So, in general 1 is not equal                 

to 2. And this means that the 2 eigenvectors are linearly independent. And therefore, they               

span the space. Right; so, if you take a course on linear Algebra or in some Physics, Math                  

methods type course, you will you may go into, you know some details of what or when the                  

matrix is diagonalizable and when you can, it will give you eigenvectors, which are linearly               

independent and so on. 
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So, but let us not go into that discussion here. Suppose 1 is not equal to 2, then these 2                    

eigenvectors are linearly independent and therefore they span the space. Then it is possible to               

basically expand your initial conditions as a linear combination of these eigenvectors,             

independent eigenvectors; v1 and v2. It is possible to find these coefficients; c1 and c2. And                

once you do this, the general solution is immediately written down. So, it is just x(t) is                 

c1 *  e 1 t v 1 + c 2 *  e 2 t v2. 

So, this is something that you might have also seen in a 1st course on Quantum Mechanics. If                  

you try to solve the Schrodinger equation, Schrodinger equation is a linear differential             

equation. So, if you are able to find, you know all the eigenvectors, so, what do you do, you                   

take the initial state of your system, expand it in the, as a linear combination of the eigen                  

functions of your Hamiltonian. And then you just simply, the, the time evaluation of your full                

wave function is given by you know these phases, attached to the eigenvectors and these               

coefficients, these crucial coefficients come from the original expansion of your initial state,             

in terms of the eigen function. So, this is something that you have seen. 
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Okay. So, now what I want to do is, use this to describe a very interesting problem, which is                   

given in Strogatz book on Nonlinear Dynamics and Chaos. So, this is about Romeo and Juliet                

and how their relationship can be modelled as a differential equation. So, let R(t) be the                

measure of the love that Romeo feels for Juliet at time t and let J of t be a measure of the love                       

that Juliet feels towards Romeo actually. It should be Romeo. So, let us change this. So, this                 



is Romeo. Now the greater the magnitude, the greater is the intensity of the feeling. And                

however, the sign of the quantity determines whether it…So, the sign determines whether it is               

a positive emotion or it is a negative emotion. 
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So, there could be also a repulsion and the repulsion would come from a negative sign. And                 

the magnitude will give you, you know the the intensity of the feeling. It could be positive or                  

negative. So, what you do is, you model the dynamics of their relationship as a coupled linear                 

system, with fixed rate constants that determine the evolution of their amount of feeling for               

each other; positive or negative. One instance of this story has the following system. 
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So, you say and . So, this is an interesting coupled system. So, so Romeo                

being a simple man, he is, he feels greater intensity and he is; the more that, you know J                   

increases, R also is directly proportional to it. And it is increasing in a positive manner. So,                 

the more that Juliet comes towards him, the greater is his feeling for her. But Juliet on the                  

other hand, is a little more complicated. 

So, she is, she feels attracted towards Romeo as long as he keeps, you know he keeps himself                  

at a distance. If he throws himself upon her, so, she has that tendency to run away. So, this is                    

Juliet’s nature. And so, you can ask what happens to this set of differential equations and                

where, you know what is the fate of their relationship, based on our analysis of linear, linear                 

systems. 

Clearly, this is a linear system, because you have and , in our very               

simple model. You can of-course have a real life scenario might be even more complicated. It                

does not have to be exactly J and and - 2R. It could be something more complicated. But let                   

us say, we stick to this model, because we are familiar with linear systems. And then see what                  

happens in this case. 

(Refer Slide Time: 19:18) 



 

So, let us start by making a phase portrait. So, we have our familiar Stream Plot now. We                  

make a phase portrait. And there you see; you have this picture, which is actually something                

very familiar. And if you think a moment, you will see that this is not a surprise at all,                   

because this set of differential equation is something that we have already seen. This is               

nothing but the problem of the simple harmonic oscillator. It is a 1D problem.  

So, there the dynamics of their relationship is an unending cycle basically. So, they are               

caught in some circle, which is determined by the total energy of your system, if you wish or                  

the intensity of their feeling. But you see that in one quadrant, both; R and J are positive. So,                   

both of them have a mutual interest in each other and both, it is positive in nature. But then                   

there are these three quadrants, where at least one of them is negative. 

So, one of them is going behind the other. But the other is unhappy. He is running away. And                   

then there is the third quadrant, where both of them are basically running away from each                

other. So, it is a one fourth successful relationship. But somehow, at least one fourth of the                 

time, there, there is mutual harmony and love. And it is a very, it is a cyclical dynamic all the                    

time. 
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So, the most general such linear model that you can think of is, of-course               

and . So, where you can play with all these parameters a, b, c, d and see what                  

happens to their, you know relationship, what is the fate of their relationship based on all                

these parameters. This is an analysis that we can do. But before we do that, we will go and                   

develop the full general theory of such a system. 

So, I told you that, your eigenvalues are something that you can write down in terms of tau                  

and delta. And in fact, all the qualitative nature of these dynamics is contained in these 2                 

parameters; 𝜏 and 𝛥. So, we will see how we can actually make a phase diagram, which tells                  

you the nature of the fixed points underlining themselves; the nature of the dynamics if you                

wish. We have not, still not defined the fixed point. And based on just tau and delta; so, that                   

is coming up next. Thank you for now. 


