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Hi guys, so this is a follow up module to driven oscillations which we have already looked at and 

so what I want to do is show you that with the help of some small tweaks around the problem we 

worked out. There are many flavours which come out so this is within the philosophy of this 

course which is to explore you know to build a model or a method which is solid.  

Take very simple decisive solid steps forward. And then use this opportunity created by you 

know something that you have lead the foundation for and do a small exploration around it. And 

then you see that so many colours you know come out you know this kind of a, an exercise.  

So you can think of this as a you know tutorial and I would challenge you to pause at various 

point and actually execute everything on your own and not just blindly or passively watch me go 

over my just only do not allow me to passively talk through. So I would expect that you pause at 

various points and then workout your own method and come up with the full analysis and then 



watch my video. And hopefully you will have more perspectives and it can all be complimentary 

in nature.  
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Alright, so as always it is useful to start Mathematica session using this clear which I have just 

done already. And I am going to quickly flash this RK4 method slide you must have seen it 

before. So basically the idea is that you first rewrite your equations in this canonical form. And 

so there is very nice generic formulation which we have in terms of vectors where you basically 

include time also in to your x vector.  

And then you rewrite your differential equation involving as many variables as you need and of 

whatever order you have to first recast an arbitrary order equation into a first order equation 

involving more variables. So that is a first step and time itself is treated as one variable so when 

we do this we are able to rewrite it as .  

So we saw that the Euler method is the simplest you know where x dot is approximately taken to 

be the rate at that particular instant of time alone and then the Improved Euler took an average of 

the velocity at that point. And the following point and took an average that itself gave a 

substantial improvement and this is equivalent to the RK2 method.  

And then RK4 method is a, you know, more sophisticated method and turns out to be an 

excellent approach all together because it nicely balances the twin aspects. You know there is a 

competition between the number of operations you do not want too many operations on the one 

hand but also you want accuracy high accuracy and minimal operations.  

·x = F



So these are contradictory forces somehow experience told us that RK4 seems to be the most 

acceptable accepted compromise between these two opposing forces. Okay so I am going to just 

load this code so the details of this code you can find in an earlier video you can go back and 

check it out. If you are interested for our purposes we just simply load this code. So what a 

physic problem I want to look at.  
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So physics problem is a variant of the driven oscillator problem that we have looked at earlier. 

But I want to consider a bunch of new cases here, well so we have looked at that is subjected to a 

periodic driving external force.  It is not just a driven external force but we have looked at the 

one particular case which had which was periodic in nature.  

And then, we looked at the special case at what happens at resonance when the frequency of the 

external driving force was equal to the natural frequency of problem in question. But actually it 

turns out that it is of interest to look at more general types of external forces. So you could 

consider a much more complicated external function and it does not have to be periodic in nature 

or it may have a portion which is periodic and it may have some other pars which are not 

periodic and so on.  

So, in order to get some feeling for this and just to exploit the fact that we already have these 

techniques and we will look a few different examples of this kind. So first thing I want to 

consider is what happens if  is a constant and if that constant happens to be a 0 that a case 

where it is an undriven problem. So we all know the answer to this undriven problem, so it is just 

going to give you oscillatory motion.  

So you might thing the movement you turn on a constant external force you know may be there 

is going to be oscillations because of this you know the oscillatory nature of the problem but also 

F(t)



this external force the constant external force. So maybe there will be some kind of you know 

motion which will cause your particle to keep on running away from where it started.  

So let us see whether this kind of intuition is reasonable or is there something else which 

happens. So first thing as always, okay for simplicity I am saying that this particle is at rest and 

at the origin at time t equal to 0. So you could consider some other initial conditions and play 

with this and explore what happens. So as always the first step is so this is actually a, so this is 

the first example I am considering so let me call it a.  

So first step is to non-dimensionalize pause the video here and figure your own way of non-

dimensionalizing this problem. It is a fairly straight forward one but even so should do this. So 

first thing, so my way of non-dimensionalization is a following is find the  scale is easiest for 

this kind of a problem which is just .  

And then I therefore get the time scale which is just . And then the acceleration 

scale is ,  is an external force which gives me a natural force scale.  And therefore I get a 

natural acceleration scale from which also I get the distance scale. I mean you can say that 

maybe you do not need the acceleration scale in this case you can directly to x scale it is okay.  

We will put this down in a standard form that we have been looking at this problem. So once we 

have position and time scale, these are the two critical ones we make the transformation 

wherever you find x you replace it by the position scale times x, right. So now the new x is 

actually a dimensionless position in some sense, right. It seems like a something contradictory on 

the one hand we are calling it position but also saying it dimensionless.  

So this is just a physicist way of saying that you are looking at a quantity which is really position 

but in such units so that you have basically scaled away these units. You have just making 

converting it into a purely non-dimensional quantity so that is what it is meant by dimensionless 

position there is also dimensionless time which is .  

ω

k /m

1/ω0 = m /k

F0 /m F0

1
ω0

t



So then you get as usual so we will go ahead and substitute wherever we have x we put . So 

 is just x, it is not should not get confused and think that all there is a second derivative so it 

must be  it is not  it is just only 1 x. But in the denominator there is going to be .  

So that is what gives me  so  and  with both of these quantities x and t are 

now in non-dimensional in nature is equal to . So there is external force which has 

to be included and so if you do take care of the algebra so and recall that  lot of 

cancelations happen.  

And then you get this very simple differential equation the second derivative 

. So we find that in fact the final differential equation after non-

dimensionalization has no free parameter. It is just a simple differential equation involving no 

other parameters.  
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Okay, so we have already said that the initial conditions are taken to be  and  is also 

equal to 0 and which is an acceptable non-trivial initial condition for this problem. So if you had 

the problem where there was no external force then this would not be an interesting initial 

condition to start. Why is that? Can you go back and check that and answer for yourself why this 

could be an interesting initial condition to consider if  were 0? Answer this question yourself.  

Now let us, let us move on so let us see what happens, so you have, so this is a second order 

differential equation how do we solve this differential equation? So there is a whole technology 

associated with solving problems of this kind, right. So it involves first of all rewriting it as some 

you know the left hand side must have only stuff which involves where an x is present, right.  

So it is  plus you can have some stuff constant times  plus some other constant 

times x equal to all stuff on the right hand side will be purely functions of t, right. So this is one 

way of separating it out and then you look at the homogenous differential equation solve as a, 

right down the general homogenous differential equation.  

And then you need to find only one particular solution for the full in-homogenous equation and 

then if you just add one particular solution to the full general solution to the homogenous 

equation that in fact gives you the full solution for the inhomogenous equation. And then you 

have to just bring in the initial conditions and the two free constants which will come invariably 

for a second order differential equation.  

x (0) ·x (0)

F0

d2x /dt2 d x /dt



We will all give fixed based on the initial conditions we have two initial conditions so two 

constants will be formed out and you get the answer. So for this problem and I am going to take 

this elaborate process I will just write down answers, I have wiped this out you can also check 

this yourself.  

So it turns out that the solution is simply . So it is a very simple solution and it 

is quite remarkable that you know in the presence of an external force. The particle is actually 

not going to not going to run away to infinity in some sense. It is going to still keep on 

oscillating about a different origin the only thing that this external forces manages to do is to just 

shift the origin about which this particle will oscillate. 

So let us see what that means when we plot in a movement but before we plot let us use our very 

powerful tool box, the RK4 method, right. So in order to send our equation differential equation 

into this RK4 tool box you must first recast this second order differential equation into a, you 

know, more than one first order differential equation involving two variables.  

As we have been doing to many problems we already know how to do this is take  

and then . And then you have , . So in vector form we have 

you know this vector which also brings in time then x and v, x is equal to this vector and the rate 

of change of x the vector F is given by 1, it is always going to be the first row of this vector F is 

always 1 because .  

And then  by definition and then . So this is the problem we are looking to 

solve, right. So once again we will use the standard code so we have defined this rate function, 

rate function is a vector and it is a vector of functions if you wish. 

And it involves this variables p, x and v which all have to be you know put in with a underscore 

sign because we are defining a function here and then. So let us go ahead and hit shift enter here 

so there we go, so initial vector is (0, 0, 0) time  the particles is at the origin and its speed is 

0.  

So it is (0, 0, 0) and the solution we already know is . So I will also define a new 

function which is called solution of t and now we are of course ready to go ahead and invoke the 

x (t) = 1 − cos(t)

d x /dt = v

dv /dt = − x + 1 x (0) = 0 v(0) = 0

·t = 1

·x = v ·v = − x + 1

t = 0

−cos(t) + 1



RK4 function. So data is equal to RK4 of ratefunc comma initial comma 40 I am taking it up to 

40 times steps. And 300 is a measure of the number of iteration involves.  

So let us quickly go back and recall the arguments that go into this function. So n max so it is 

just the number if you make that larger than it is going to involve more operations and perhaps 

we will give better accuracy. But I am just choosing it to be 300 and I know that this is going to 

work well. So I am going to hit shift enter so it has already generated the data for me.  
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I can go ahead and do a list plot of this, there you go. So this is the solution coming out of the 

numerical implementation. So let me hide this and then compare against my analytical solution 

and there you go. So you see that it is perfect oscillations so the solution is so first of all there is 

perfect agreement between RK4 and my analytical solution.  

And it is interesting that the analytical solution for this problem is also so simple, right. It is just 

an oscillation it is going to give you the same cosine t oscillation if you had  then also you 

will get . I mean I am generally you can you could get .  

So I told you to think about what will happen if you started with this initial condition  

and  with .  

So you will simply the particle will just remain at the origin forever so it is not very interesting. 

So probably you should choose some different initial conditions if you are working on the 

problem with . And then you will get may be you can choose  to be some 1 for 

example some other speed and then you will have oscillations which will be just cosine t plus sin 

t some linear combination of these two according to initial condition.  

But here we see once again that you also get perfect oscillations there is no tweaking of this it is 

just oscillations and a particle is going to be bounded and does not matter how large your 

external forces it is not going to manage to shift the equilibrium position nothing else. So this is 

what something quite interesting.  

So if you want your external force to do something more dramatic so you need it to change as a 

function of time. So saw that ofcourse if you had  where itself a cosine function that is what 

problem we considered first.  

We saw that it could if you add resonance it could give you like really large amplitude 

oscillations and it could take a particle I mean it is going to keep oscillating about the origin. But 

its amplitude can keep on increasing. So let us look at what happens if my external force is not 

periodic but it is constantly increasing as a function of time. 
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So the most natural function that comes of mind of this kind is a linear linearly increasing 

external force, so that is external force a linearly increasing external force. So we are studying 

this differential equation and now we take  to be some constant times t so I have chosen that 

constant to be a it is not be confused with acceleration a is just some variable. It is a parameter of 

your system that you can weigh.  

So as always start by non-dimensionalizing your differential equation and you can pause the 

video here spend a few minutes and work out your non-dimensionalization and then cross check 

against my after a movement. So my solution is just the following as always I take my  to be 

just  therefore it gives me t which is .  

Acceleration scale in this case is , right, so for t I will use I have to use this t scale. And 

therefore once I have I can get also x scale which is just  so you can see from this equation 

that force by k is just position. So I can use this  and then t is just nothing but . So then 

with some small manipulation you can quickly convince yourself that the length scale in this 

problem is .  

F(t)

ω0

k /m 1/ω0

at /m

at /k

at /k 1/ω0

a
m ω3

0



So if I plug-in again wherever I find x I must put length scale times x which  and 

wherever I find t I must put . So we are doing this exercise in non-dimensionalization so 

often so much repetition of this because we have found that lot of that students are shaky on this.  

Apparently it is simply thing to do but it throws a lot of students into confusion mode. So it is 

just trying to illustrate here that in fact it is very simple we just find all the scales in the problem 

and then you know using this technique not only you can do it quickly you can also now you do 

not have to introduce a new variables.  

So that is also one way of doing it, so you can think of each of these scales and then call them by 

new label and then you introduce some x divided by you know the m scale is equal to a new 

label. But here the idea is you just retain the labels as they are x will remain x, t will remain t but 

you must interpret it right in the end.  

So what do we, wherever we have x we will replace it by length scale times x so we have 

,  is this coming from  which is sitting in the denominator. 

So which is equal to . A lot of cancelations will happen and we will be left 

with just . In the problem that we considered earlier it was .  

Now there is dependence on time and that is a linear dependence. So what would be expect, so 

now ofcourse we expect that since it is a force that is external force which keeps on increasing as 

a function of time. You do expect that your particle will not stay bounded it is going to be 

unbounded motion we will that in fact this it is true. But there must also an oscillatory 

component to this and so indeed that will also hold out.  

So by the way there is no free parameter left and so we do not have any other you know knob to 

tune to change to some qualitative aspect of your solutions. So just back with this simple 
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problem solve for it that gives you all the you know the most general behaviour of your system is 

contained in this problem involving no free parameter.  

So we have already taken  to be 0 and  to be 0 it is not an issue because this external 

force is anyway going to kick it out of its initial positions so there is no issue. It is just that if you 

did not have external force and if you took this form then it would be a dull problem and it will 

just lie there on the origin forever. 

Now this is second order differential equation which can be solved analytically so once again one 

can invoke these techniques. So the solution for the homogenous equation the general solution is 

just always the same in these kinds of problems. It is just going to be some constant times  

plus another constant times . So all the, you know variations are coming only from the type 

of external field which is being applied. 

And therefore only the particular solution will change, and the particular solution you will see 

you will start to see a pattern. So in a slightly more advanced course on math methods or you 

know some differential equation course. In fact you will see that you know this whole class of 

differential equation there is very nice well worked out prescriptions for solving this. There is a 

way to get at the particular solutions.  

So here I am going to once again just give you the answer it is a very simple answer.  
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So . So there is a  type of term, earlier we had  should be there either 

a  or . So in this case this turns out to be , we I mean it can be arbitrary 

combination of these two depending upon the initial condition. So it turns out that for this 

problem it is just .  

And t is you know coming because of the external force, so as a function of time the position of 

your particle is going to keep on increasing. Not only is it going to keep on increasing but 

actually it is going to increase linearly with time. And then these oscillations only give you some 

fluctuations about this linear form.  

So once again the canonical form is the , , , all of this 

information can be encoded in vector form like here. And then we have vector x dot is equal to f 

rate function in this case is 1, v and  so I am going to hit shift enter initial conditions once 

again (0, 0, 0). 

Solution now has changed, I told you the solution is , so I have the solution here. Once 

again we invoke the RK 4 I continue to use 40, 300 I mean we can tweak this and play with this 

we will see what happens, okay I do not need to make this verbose but this one I will show you 

what it looks like, so there you go. So it is a very interesting plot, so it shows you that it has the 

sort snaky behaviour. 

x (t) = t − sin(t) sin(t) cos(t)

cos(t) sin(t) sin(t)

t − sin(t)

d x
dt

= v
dv
dt

= − x + t x (0) = 0 v(0) = 0

−x + t

t − sin(t)



It is like the system really wants to oscillate but then on average it also needs to keep on running 

away from the origin. So there is an external force which is kicking it, and it is going to keep on 

running away as a function of time. Yeah, so it is interesting that this external field which is 

proportional to time is going to give you also displacement which is roughly proportional to time 

only. 

(Refer Slide Time: 26:34) 

 

 

Suppose you do not have this  term, suppose we are we had a differential equation which 

only involved an external force and if there was no harmonic type potential in play. And if there 

d x /dt



were no k if there were no spring attached to this then you have to take you know integrate it 

twice. So it is going to be actually quadratic in nature.  

So you see that there are two things that this the spring is doing. On a one hand it is trying to do 

bringing some oscillatory motion, but also it is also giving you it is also reducing your, the speed 

with which you run away to infinity. And it is in fact brought it down to linear. 

And the final check is ofcourse against the numeric which we know and expect that are agree 

and indeed. So the two of them do agree as good appreciation as you would like. And I am just 

using 300 in this measure of number of operations.  

You can play with this thing I am sure that it will work out even for much smaller number here 

as well. So, let us do a quick check of what happens if my external force were not linear but 

quadratic in nature? 
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So what do you expect? You can pause the video for a moment and not do any calculation but 

ask yourself if you can guess how will this system behave for in the presence of a quadratically 

increasing force? So let us look at the quadratically increasing force case now. So I have 

. Now a once again is not acceleration a is a different constant different units and my 

solution for the non-dimentionalization is soon coming up. 

So pause you video and work your own non-dimentionalization. Okay,  is just the same , 

therefore time scale is , acceleration is scale ,  I am going to use , x scale is 

just  which is .  

So I will just write it as, a by m omega naught to the 4. Earlier I had a by m omega naught cube 

now it has just become a by m  omega naught 4. And now you see that if I make the 

transformation x going to a by m omega naught to the 4 times the x and t going to 1 over omega 

naught times t. I will get a string of cancelations on both sides I urge you to verify this, right.  

So you will see that on both sides lot of calculations will happen. And crucially what has 

changed now the right hand side is I have a by omega naught squared because there is a t squared 

sitting there. 

F(t) = at2

ω k /m

m /k at2 /m t2 1/ω2
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And so lot of these things will just cancel out and finally my differential equation is a very 

simple . So once again no free parameter, , . If I impose 

these initial conditions I can ofcourse use a general theory of differential equations of this kind, 

you know linear differential equations in homogenous ones and I have a technique to solve for it. 

But let me allow you to guess, what do you think will be different this time? So ofcourse we 

must have something  and something like  and whether you have only one of these 

two or both of these two will depend on  and  and also ofcourse you know that precise 

form of the particular solution. So we saw that when I had just  the particular solution was just 

a constant I had a one. 

And when I had the particular solution brought me a t and now when I have an external force 

which is , so what do you think it will be it is going to be quadratic in nature. So it is going to 

be in this case just , so this is the solution. But in general actually the theory tells us that if you 

have  sitting on the right side you could try out an ansatz like . 

And then you have to find these coefficients. So there is a technique called the method of 

undetermined coefficients. And so it basically tells you what is the right type of form you must 

give for the particular solution, and then you plug that in and then you can actually extract those 

coefficients. And so then there is some more subtle aspects involved with this which is there is 

auxiliary quadratic equation that you can write for the homogenous part. 

And then if one of the roots of this actually agrees with a certain coefficient on the right hand 

side, then you have to be a little more careful and so on. So but in general if you have a 

polynomial siting on the right hand side of a certain degree, the particular solution will also 

involve a polynomial of the same degree. So this is something that you might encounter in a full-

fledged course on ordinary differential equations. 

For our purposes I am telling you that the solution for this problem is just . You 

can go ahead and plug this in back end to the differential equation and verify that it is true. So 

now, what should we do? We should recast this second order differential equation into the 

canonical form involving a first order differential equation of a vector of multiple functions.  

d2x /dt2 = − x + t2 x (0) = 0 ·x (0) = 0

cos(t) sin(t)

x (0) ·x (0)

F0

t2

t2

t2 α t2 + β t + γ

t2 − 2 + 2 cos(t)



So this x and v and I have  and  and then not only do I do this but I have to recast everything 

all of this put together including time into vector form. And then I have  where F is equal 

to 1, v and  that is what has changed.  
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So then we have this rate function which also undergoes modification initial vector remains 

unchanged, initial vector is a (0, 0, 0). And then I have my solution has changed 

 and then we go ahead and invoke the RK4 function. I am only going up to 10 

this time. So you will see in a moment that.  

Yeah, so this is what the solution looks like. So I mean it is basically quadratic in nature. I have 

chosen a small enough t so that I can see the small wiggles which you can see, right. Because  

is already a sufficiently fast growth that it is actually not going to it is not going to make this 

2 cos(t) + t2 − 2

t2



very visible. So this fluctuation, and then indeed there is also cosine in there, so as we can verify 

by cross checking my analytical expression with this.  

So indeed the both of them agree very-very closely. So if I make this instead of 10 if I make this 

100 so you will see that it is hardly going to be visible if I make it a 100, and then if I run this 

also make this like 80 let us say. And then you see that it basically looks like , so it is you know 

very heavily dominated by the external force.  

But once again I find it quite interesting that a second order, quadratically increasing force is 

giving you dynamics which is also quadrilateral increasing. Just simply because you have also 

this there is a springiness associated with the motion of your particle and that spring is not so 

successful in giving it any oscillatory motion here. But it is restricting its running away and it is 

keeping it at quadratic in time.  
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So the final example that I want to do here is an exponential decay. So if your external force 

where started off with  but if it were to decay down exponentially like here. I have another 

parameter  in here. Then that is an interesting external force to consider, so what kind of motion 

can you get? Will your particle be bounded, will you particle run away, what happens?  

So let us check this, so I have to warn you that now the non -dimentionalization exercise here is a 

little less trivial than the previous one. So pause your video and see if you can come up with two 

independent non-dimentionalization schemes.  I am going to use one but maybe you should 

F0

α



come up with a different non-dimentionalization, solve your entire problem in a different non-

dimentionalization scheme.  

Then cross check that both the results should agree. So this is something that you should 

definitely do. So let me, so pause your video work this out and then you are ready to look at my 

solution. So my solution start simple , t scale I will take it away . 

Now acceleration scale is , x scale is . That was a very simple scheme I have chosen, so 

what could have changed? What could have changed is, we could have taken a different time 

scale for this problem. So alpha brings it an alternate time scale, instead of using  I could 

have also used  as a time scale.  

Or I could have used some linear combination of these two or something like 1 over square root 

of omega naught square plus alpha square for example or something else some that is a very 

complicated things. 

So there are actually infinitely many ways of doing non-dimentionalization and depending upon 

the precise details of your problem may be one is more convenient than the other but now of 

these can be wrong. So I urge you to play with this, try out at least one more and may be many 

more non-dimensionalization schemes, extract the solutions and make them all agree with each 

other.  

So in the spirit of this course is to basically solve simple problems but look at them from 

multiple angles and reinforce our understanding. So, make it so solid with simple problems that 

then automatically new fresh directions emerge and then suddenly we find ourselves solving new 

problems unsolved problems or problems which may be which may lie in the realm of research 

suddenly opens up.  

So this is how research also those just that you become so strong with what is already know, then 

suddenly you keep on knocking on doors and some door opens up which actually leads you to 

something new and sometimes not just new but something very exciting can also come up in this 

same process. So that is what this course is about.  

ω0 = k /m 1/ω0
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Now making this transformation I will change x to , t to  and then we get the string of 

simplifications. And now there is a small variation which appears. We have . 

So it is no longer a parameter less final differential equation, so there is a new dimensionless 

parameter. 

So you can see that I have introduce a  which is actually . So it has the same so  and  

have the same dimensions, so  is dimensionless. So  is dimensionless and  is also 

dimensionless. So  is indeed a dimensionless parameter. So there is this one free parameter 

left in this problem it is still a completely analytically solvable differential equation. 

So I have for simplicity I am just taking  to be 0,  to be 0 and the solution it turns out I 

am just giving you the solution. You would expect that the solution will be a linear combination 

of  and . And then because there is a  siting on the right hand side, the theory tells 

us that we must try out for a particular solutions something which involves  times some 

constant. 

So you can take care of all the details and work out. There is a very systematic way, it is not 

magic that I am able to write down the solution. There is a very well-known and well-delineated 

systematic approach for doing this. If you do it then you can show that  is given by this 

expression.  

For our purposes it is suffices, if we can just plug this expression in back in to the original 

differential equation and check that indeed it holds up. Now, for the numeric so you should 

workout this problem for various different values of lambda.  

But I want to choose lambda equal to 1 but you can maybe use some you know like a manipulate 

command and you know try out our range of ’s and see whether the nature of the solution 

changes substantially.  
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So by the way, the case of  is interesting. So what does it mean? If I put  and my 

original equation,  is a same as  basically in units of this . So if  is 0 that is basically  is 0 

and that means basically  and is this a problem we already know how to solve?  

Yes, we just did it in this very module. And then you expect the solution to be just and 

that is what we are recovering the solution, so that is good. And the other extreme is . So 

in other words, if  you see that , right that is also a case that is familiar. 

What is interesting is that, both these limits actually give you just perfect oscillations. I mean you 

would not recover that if you directly plug in here for the reason I told you earlier which is a we 

have chosen this special initial conditions which make the that problem where if you put . 

If you put  is just 0 if you may then it is going to be an uninteresting solution. I just going to 

give you .  

But if you try out, so this is some is an exercise for you guys. I want you to check the limit of 

lambda going to infinity and see that it will reduce to a more interesting solution for the unforced 

problem by taking  to be some,  can be 0 but let us say  is taken to have some finite 

velocity, may be 1 let us say or in some, some number you can choose.  

And then you will see that, work out the solution and then take that limit and then you will see 

that indeed there is going to be a connection to the original cosine plus sine, . So it 

is quite nice that an exponential decay function whether it is, so there are two limits to these.  

So constant or  and both of these limits will give us just pure oscillations. So now what 

happens if , let us look at this. So we have indeed there is this exponential part which is 

actually like your transients so it is like does not matter what  is. The system is eventually going 

to oscillate, it is not going to run away to infinity, because the force is simply not strong enough. 

So we know that, you know, the two extreme kinds of this type of force are either it is constant 

force here the constant force only manage to give us oscillations but about a different equilibrium 

position. And the other extreme is just no force and that is the familiar problem where ofcourse 

you are not going to have anything other than oscillations about the mean.  
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So if you put an exponential decay in time also you expect that this motion is going to be 

bounded. So this is an argument you could have perhaps come up with right at the beginning 

itself.  So now you will see that now that we have the solutions and we will explicitly check this 

numerical . And then we recast it in the canonical form, in the vector 

form like here.  
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And then we have the rate function initial vector and then the solution all defined like here then 

we go ahead invoke the RK4 routine. Let us see what the solution looks like, so the solution 

looks like here. So indeed it starts of, you know, trying to do this exponential decay but this a 

very small effect it is going to be there only for a short time.  

So instead of a 100 if I have made it just 10 then perhaps it will be more exaggerated this thing. 

So there you go initially it seems like it is going to keep on digging but it is not going to fall 

below a certain values because this  will kick in for large t and  is basically 

become irrelevant as times become large.  

So if I take something like a 40, 40 time steps there you go you see that now it is basically its 

amplitude is a constant for all practical purposes and now if I had to go here and compare this 

against my analytical solution I would not be surprised that the two of them agree. And in fact 

that only adds to our confidence.  

So we what have we done in this module we have played some games involving external forces 

of a very simple kind but which were not oscillatory in nature and manage to extract some very 

simple and very instructive physics out of this. And we manage to use RK4 to cross check our 

results. So by the way just before I close off I want to tell you that these are problem which 

appear in the very famed Landau-Lifshitz series.  

cos(t) + sin(t) e−t



So there is a very nice book by Landau-Lifshitz on mechanics but it is rather intimidating 

textbook if you were to just directly go and look into this section of oscillations you would find 

these problems. And for a person beginning out in physics Landau and Lifshitz would be a 

formidable place to learn it from.  

And so I am pretty sure that somebody if you know if there are picking up, the first mechanics 

textbook that they picked up was Landau and Lifshitz it would be quite difficult for them to open 

up and understand all of these in a such a transparent way. 

So what I have managed to show you is that you know problems of the level of the Landau and 

Lifshitz also now that we have worked it out in this explicit manner everything seems so crystal 

clear. And so in fact I urge you to go back and try out more problems from Landau and Lifshitz 

and even more challenging textbooks.  

So now that we have this powerful technique you do not have to you know suffer through some 

very difficult algebra I mean you should do that as well. But in, addition you have this alternate 

approach cross check and then once you have understood it, it becomes easier actually to master 

the analytical tools. So on that note I sign off. Thank you. 


