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Qutline

In this module we will look at

The impraved Euler method and how it con dramaticolly improve over the Euler method.

Okay. So, this is a quick module, where I want to show you how using the Improved Euler
Method in place of the Euler Method can actually dramatically improve the quality of the

results, right.
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The Driven Oscillator.

Clear["Global s"]
We have keamod wene very dmple fumercal tedmiques for solving differential equations, So far we hive aaly ised heve methad to iy very iample problems which we [adepeadetly
e b b sl amalytically, Meat we wosd ke 1o et e miore &fficell problesns where snalytical methods become Rander snd harder and teat thess fi i, Wi also wiih b
develep the mumeeical methods further wo (hat they o be made & efficicnl ai possible, Eventually ance we have cnough faith i our numerncs we wo le probler thal s

mtractable snalytically.
One peoblem of great imerest is the driven oscillator. Suppose we have a harmanic ascillaior set up with a mass m sttached 10 8 spring of spring o ion of motica (s the
familiar:
d'x
= = -kx, U]
dar
[
Thin wohd of comne give smple hamsosic motion with the natural frequency wy = “- L Supposc in addition we have & extersal per ey o, This

would correspond 1o a diTerential equation of e pe

#
m —x s =kr + Foosiaf).
FE]

So the quick recap is about how we looked at the Driven Oscillator. You know, we went

through all this analysis, non-dimensionalization, et cetera.
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Full Solution of the Driven Oscillator.

The stealy statie sobation we kave obtaned o surely s the full solutics of the differential equation, because afl the information about e initial conditions o mixsing! [m (s1, te seady vate
solution betier pod deend on imital condiiions, because veady sate s 8 bong-time phenomenon aad the sysiem should et 1o there repandless of where i staned. Also 8 second onler
dhffeecenial equasion mest have i0 two free consiants, which are fived with the belp of the initial condstions. This information plays cet cruclally when we contider the ransien behavior ol
he yyuem,

What we have already found as & sseady siate solution ks calbed  particular solution. The theory says ihai the full general solution Is cbtained by amply wbding o this paricular solution what

balled solution of diff | equation, cas is simply
&' ]
— ==X
dr
Exercise
) Findd the | solution x4 of the difl lequation abrve. How mamy free constants dos i contain

) Meow wrine down the full peneral sobution of the problem & 50 = i) + 5,40, Chck that this solution works explicitly by plugging ints the original
) Moo plug i e nisinl condigions 1 fix the free constants.

{4l Plok she soluion for a range of the driving frequency w. Discuss the solution.

) Whit about resomunt delving® Wit is the solution to this problem® Take the limit spprogriately 1o extract the solutioa st this point

Solution
{n} The complemeatary solution is of course well known:

(IxE] M g A - =

- j N
- - o, H m e * .
Exercise NG
LS -
) Fiad the geoeral walution x4r) of the b d ] above. How masy free comstants does if coatain? WL
b} Now write down the full pemcral sohation of the problem i 200 = i) + 2,0, Check that this solution works itly by pilugging i iginal

) Now plug im the inikial conditions 1o fix. the free constants.
) Plot she salation for & range of the deiving frequency o, Discuss the solutian,
) What about resonant deiving? What 3 the salution t this problem? Take te limit approgeistely 1o extract the soluiies at thas paint

Solution

i) The complementary slutsan 15 of courss well kiowh
XAf) = ey cosif) + oy sinif) {10y

Since it the general solutzon o & second-onder differeniial equation ii betier have two free constants, and i does.
) We adi pow feady o weite down the full pencral soletion of the cetginal diflesential eqaatice:

: I
Af = oy cosli) + ca sinif) ¢ —— cosie i) 0}
Mo

e} Now plugging b the imtlal coeditions we have :

!
w0 = s |

W)= =0 t

|
24if)= I_‘i-“z cosi) + cosfu )]
i

‘which is e full sobstion of the problem

We wrote down the steady state solution. Then we worked out the transient solution, which

comes out from finding the general solution of the homogeneous equation.

Then we stitched them together right down the full solution, which includes inputs from the

initial conditions as well. right.
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) Now pliging i the nlal coadiion we have ‘\‘::f:'
s
1
o) = o+ I———_ =1
-w
1
Hh=n=0
| 3
@ alf) = ——|-e cosif)+ costu
1-&
which is e fill sostion of the peoblem
() Nerw we phoet thas salution
(-o* cos[t) + Cosut])
Hlniwlate[nol[—l, (t, 8, 1060}, no:Lahelw], (s 8, zp];
l-w
What we are seeing is nithing bt et since the solution i just seperposing two cosine functions ! The beats are particularly cvident when the twa frgque s easch other, that is

clae 10 reshance,

1i e out hai the peoblem o resonance requires a special handling and the solulion exacily at that poisd is given by

) T
= limay < .;..-‘l-" conlf) + cosiis 1) )

1
= ) = codi) + 2 aal )

Plot[cos(t) + %snm. it 8, 10)];

Ad expectod, the anipitice of the vibeatians become et and larger withinl bound. The above limsa, by the way, coubd have beeh evi

Then we visualized the data, we visualized the solution. Then we argued about the subtleties
associated with the resonance point omega equal to 1. And we saw how the solution is of a

different kind there. And then, we basically reproduced the data using the Euler Method.

So, let us, so, I have to do this clear global, so that there is no memory of the system, so that I

do not need this. I will go on to Euler Improved.
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Ths s evacly what we slready obtamed walytically. Such symbolic caloslaivons make Mathematicn o powerfial iool!
WL

Improved Euler’s Method

« Improved Euler's method improves the Euler method by reducing he local esror to onder i’ and global error to order ',
® This 18 how Improved Euler Method 18 defined:

o =h+h

La=k+hfin ) 4

Xos| =Xyt h 1

» This can also be writlen as

ha=h+h

iy b # it + by 5+ b fity, 1)) %
1

I =Gt h

 The improved Euler method is also known as the second-order Runge Kuna (RK) method.

Exercise
{a) Improve the eulerGen function o obtain a code that impleenents Improved Euler Metbod. Call this function as eul

1) Solve the driven harmonic oscillator equation discussed with eulerGen and euberImp methods. Compare the sce
cags, See what 18 nMax thal you require i each case 1o oblan an accurile resull,

Solution

Okay, so the Improved Euler Method is like the Euler Method. But it just introduces one in

between step. So, in the Euler Method, what do you do? You just go from ¥n to ““n+1. Here



too, that is what you will eventually do. But you do not directly go from ¥n to “n+1. You go

to an ““n+1, which is like the Euler Method, right.

So, Tn T ey So, you try to go to the next step. But then, you try, you use the information of
the derivatives at both the points, right, so there is a certain, so in the Euler Method, you go to

n+1 using the derivative information at “n. And that is it, you have moved to the next step.

But here what you do s, you pretend to go to n+1, but you call it only Zn+1.

And then, go there and figure out the derivative information there. And then use the
derivative information at this tilde point and then, along with the derivative information at xn
itself and take the average of these two. That is the 3" step. And it turns out that, this method

of finding the derivative is going to give you much better results.

So, technically, this becomes a, it reduces the local error from /° to order /4. So, the details
you do not have to understand at this point. So, there is a notion of local error, global error

and all this which you might see in a more sophisticated numerical methods course.

But so, we are here interested only in the implementation of this. And you can directly see by
comparing with your numerics of using this method and the other method, that this is better.
Okay so, this can also be written as in this, more compact way. And the Euler, Improved

Euler Method is also known as the 2™ order RK Method, Runge-Kutta Method.

So, that is a more powerful 4™ order Runge-Kutta Method, which also we will discuss at
some point or maybe we will give it to you as a home work. So, if you want, you can pause
and take the code from last time, where the Euler Method is implemented. And make some
small modifications to it. And then you can, you can get the code for the Improved Euler

Method, right.

And then go ahead and use the Improved Euler Methods to solve the driven harmonic
oscillator problem. We have already seen how to solve the driven harmonic oscillator with
the Euler Method. And then you can compare the accuracy of these two, doing some test. So,

that is what I am doing here.
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Solution

uis eulerIng(F_, %0, ¢f_, nMax_) is Module|(h, datalist, prev, nextl, next, rate, ratel),
ha (ef = KQ[1]) £ n¥ax 41 N}
For|datalist s (¥},
Lengthjdatalise] s n¥ax,
AppandTo [datalist, next],
prev « Last [datalist];
rate s Through(F @8 prev];
nextl w prav + hrate;

ratel » Through[ F ee next1];
h

et w provs = (rate s ratel) |
2

i

Return{datalise]}

1« Clear[u]
[t , x5, v el}
WDet[ , o, v e
vbot[t , x , v ] n-x+Cosut];
initial = {8, 1, 8};

4= 0.9;

ElFam ]
Lengthjdatalist] s nMax,

AppendTa[datalist, nex

prov = Lastdatalist];
rate » Through[F #8 prev);
nextl s prov s hratej

ratel = Through[ F @ naxtl];

h
MK = Prav e = [FatE + rAtAl) ]
2

Ji

Returndatalist];

w5~ Clear [u]
Wi, L, v]=l
KDot[E , ¥ , v ] wwj
wDot[t , ¥, v ] u-1+Confut]]
initial= (8, 1, 0);

v 8.9
data & eulerGen((Id, =bot, vDot], initial, 100, 10006];
Shu[LHlPle![datal i1 0 1421, Jodned - True, Plotharkers - None, PlotRange + Full],

- 0 + 0
ﬂat[‘ as(t] + Cosfwt])

o 1 ()8, 186], PlotRange + Full, Plotstyle+Red] |
-

w = 0.9
dats « eulerlap({Id, xbot, vDot}, initial, 100, 2000];

So, this is my implementation of Improved Euler Method, right, there are only some small
modifications. There is this in-between step, which comes in, which is also implemented in
here. But once again, I urge you to find your own solution, before you look at my solution.

Maybe you have a better solution. Who knows, right?

So, we will clear w, then once again I have, you know these 3 functions remain unchanged,

right, and then I input all this. I choose @ = 1. So, now you see that if I use Euler Gen, what

was taking me so long?
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1) Solve the driven harmonic oscillator equation discussed with eulerGen and euberImp methods. Compare the sccuracy of your computation in each of the
cases. See what 18 nMax that you require in each case 1o obtain an accurate result

Solution

o= eulerGen(F , X8, ef_, aMax ) i Module|(h, datalist, prev, nest, rate},

hu (£F - XOEAR) / Max £J N
For[datalist « (20},
Length{datalist) € max,
AppandTo[datalist, next],
prev = Last(datalist];
rate = Through[F e prev];
TERT = prEv + hrate;

1

Return{datalist];

1

sup- oulerlmp[F_, X8_, tf_, nNax_] tu Module|(h, datalist, prev, nextl, next, rate, ratel},
he (£F = EOELE) / nitax £/ K}
For|datalist « {¥8),
Length[datalist] s nitax,
AppendTo[datalist; next],
prév |L|![[ﬂ||.\' |1I];
rate s Through[F#e prev);
nextl s prov s hrate;

(L XE] B
- - — -

Returndatalist];

wie Clear[u)
Tdfe, k., vl=l}
¥Det[t , x , v ]uv;
vbot[t , &, v ] w=x+Cosfut]]
fnitials {0, 1, 015

s ww 8.9}
data » eulerGen|(Id, xbot, vbot}, initial, 108, 10060];

Shm[L‘i:lPlut[dlta[ 335 115 2] Joined & True, PlotMarkers - None ; PlotRange - Full],

(=" Cosft] + Cosfut])
Flot[————————— (£, 0, 100}, PlotRange < Full, Plotstyle +Red]
1=

Okay, so, since I want to compare against Euler Gen, I have copied the old code as well for
comparison here and I have copied and pasted it. [ will run it. And then, if I go ahead and run
this, so, this should work out alright. So, there you go, this is data that we have already seen.

This is a plot that you have already seen. But now I want to re-do the whole calculation, but

with the Improved Euler Method. There you go.
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e w 0.9
data & eulerlap|{Id, =Dot, vDot}, initial, 100, 2000];
snu[usmn(danl §i 0 14321, Jodned - True, Plotharkers - None, PlotRange + Full],

1 18,8, 180}, PlotRanga + Full, Plotstyle+Red]

-+ Con(t] « Confwt]]
Pl | e
[ 1-¢

-8
wis el

data & eulerlap((Id, xDot, vDot], initial, 100, 1000];
SHa[LlslPlet(dan[ §4 s 14321, Jodned -+ True, Plotiarkers - bone, PlotRange + Full],

P'lnt[tu:[:] S ging ), (t, 8, 180}, PlotRange = Full, PlotStyle « m]]
1

So, you see that the agreement is much better, not only is the agreement much better. But

look at the time steps involved. I have only run it for 2000. There I ran even though I ran it
with 10000, the agreement was not so great. Now here, it is like practically indistinguishable

the red and the black are sitting on top of each other.

If I run it for 10000; and which I do not even need to do, 2000 already is good enough. If I go
to the resonant case, so, let us see what happens with the resonant case. This is the old one.

So, we saw that for larger times, it failed by a bigger and bigger margin with Improved Euler



Method once again, even just with keeping this as 1000, this parameter as 1000, already the

agreement is excellent.

So, when you go from just the Euler Method by a small modification to Improved Euler
Method, already you see that the results have improved so dramatically. But if you go from
RK 2 to RK 4, the results will be even more dependable. And so, in fact RK 4 is the standard
method, which is very reliable. Even there are higher order methods, but there is always a

cost.

You know you pay in terms of the complexity of the code for the accuracy that you get. But it
turns out that a nice balance between cost of the algorithm and accuracy is found in the RK 4
method, which will be described later on. Okay; so, that is what this module was about. But I

want to finish this with some fun and games.
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Some fun and games

T th v, Wi Ui the I dled Play o fisden 1o the L VapDuia hadds W Fors.

wgr= Clear [®Global +®)

LERELH

woe2n 260,033
3225 29366
wye2m 329.63;
Wy u 2w 349,23
wuln 392

wndn 440}

wpadm 493.88;
g u25 523.25;

fuft.] s ACosfuy t];
falt.] = ACes[= t];
falt.] =Acos[uy t];
falt] s ACosfuy t];

BF+ 30 4 ~ B2

- - — —

wy 2 293.66]
wy s 329.683;
wanln 349.23;
wye2m 392;

CEFLE B

wnln 493.88;
wyw2m 523,25

fult] s ACes[u; £];
fait.] sAdos[e; t];
falt ] = ACos[uy t];
falt_] sACes[u t];
fylt.] s Alos(ug t];
falt.] = ACos[u t];
fe[t_] s ACes[e; t];
falt.] sACos(ugt];

Play[fi[t], (%, 8, 2}]
Play[fa[t], {t, 8, 2)]
Play[falt], (t, 0, 2})
Play[fa[t], {t, 8, 2}]
Flay[faft], {1, 8, 2}]
Play(fa(t], {t, 8, 21]
Play[fa[t], {1, 8, 2}]
Flay[fa[t], {t, 8, 2}]




=2 104405
wyudn 10080;

fFit_] » ACos[ust]}
Blt. = Alos(umt];
hie ] = fit] +glt);
Play[{hit]}, (t, 8 2)]

l' I BOMOH:

So, it turns out that you can actually, literally play sounds on Mathematica. So, there was this
previous lecture, where I talked about oscillations and how you can superpose oscillations
you know in terms of the linear superposition principle and so on. So, it turns out that you can

go to Mathematica and create a wave, like this.

And not only visualize it, but actually you can even, you can hear it, right so, you create a
wave of this kind, A cosine of omega 1 t, as if chosen a bunch of frequencies. And you will
see in a moment, why I have chosen these. And there is this comment called Play. You can

go ahead and play these various frequencies, right.

So, I have chosen some; you know a set of frequencies very carefully. You will see in a
moment, what they imply. So, if I play this (Playing frequencies) there you go. Right, so, I

hope you recognized what that was.

In fact, you can go ahead and create your own small groups of nodes and then you can
superpose various waves and play them together. And see if you can make some nice
discoveries or some happy sounds can come out of this. Okay, so, that is what this module

was about. Thank you.



