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In this module we will fook at

'
driven oscillators, and the concept of resonance

So, in this module, we are going to look at Driven Oscillations and understand it also with the
help of a numerical method, which is known as the Euler method. So, I will assume that you
have already seen the Euler method. And so, and yet, I will try to make this discussion as

self-contained as possible, right.

So, there must be a way for you to go back and check out this video, where we discuss the
Euler method and where we work out the numerical tool, which I am going to just use this
tool, as if we have already done it. And yet, I will try to make this module also as

self-contained as possible.
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The Driven Oscillator.
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We have Jearsed some very simple mamerical tochnigues for solving differential equations. So far we have only used these methods 1o seudy very simple problems which we independently
henw horw 10 solve smalytically. Nest we woald ke 10 set up move difficult probems where analytical methods hecome harder and harder s test these mumerical methods. We slso wish 1o
develop the numenical methods farther o that they can be made &5 efficien as possible. Eventually once we have enouph faith in our memerics we would want t tackle peoblems that are
imractsbie analytically

e probler of great increat 1 the drven oncillator, Suppoic we bive 5 harmank oicillalor st §p with & mass m attached 10 & pfing of ing condtant &, The oquatian of motion 1 the
familiar
d'x
m== ==k, n
dr
Thi woukdof coune givesgl barmaric motion i e st fequesy = | £ Suppose in addition we have an exseena] periedic forve that drives the s 1 8 frequency . This
wisuld gorrespond to & difFercatial equatios of the 1ype:
d'x

m = = =kx + Fosiw)
dr

Exercise
) Nom-dimensionalieg the equation by choosing vatable scales eaprossing the equation in dimensionicss quantitics
b} How masy frez parameters are left in the equation afier non-dimensioalization”

Right, so at this point we have already seen some numerical methods for solving differential
equations, right. So, if you have skipped ahead, then perhaps now is a good time to go back
and check out these videos. But even, otherwise we will quickly briefly mention, what is

what is happening here. So, what is the Driven Oscillator?

So, the Driven Oscillator is a simple harmonic oscillator, in which there is a forcing term. So,
we imagine this is the simplest, a simple harmonic oscillator. The simple harmonic oscillator

is given by just this differential equation, m d*x/dt* = — k x, right.

So, you imagine that there is a spring connected to a mass m and the spring constant is &. And
so, we know that it is this mass time acceleration is the force, given by —k x. And the

differential equation corresponding to this is m d*x/dt* = —k x.

And from high school, we already know the answer to this type of differential equation is just

T
given by x = acos(wt), “o 1 have defined “0 — V kfm pere. Omega naught t plus,

there would be both sine and cosine, right.

So, this is something that we were told is a solution. I do not think, unless you have already
taken somewhat more sophisticated course, so, you perhaps do not understand how to work
out the solution for a general differential equation of this kind. So, the theory of differential

equations, particularly of this kind is quite well-developed.



So, there are systematic methods, by which one can actually arrive at the answer to this kind
of a problem. And particularly, differential equations, which are linear in nature like the one
we considered here, it is linear, because there is no square in x, right or this d* dt? only
appears as a linear object, it is not (d* dt?)* or there is no nothing like sin(x) or no

complicated things involving x.

But you can have, you know, as complicated function in #, as you want. And still it can
remain linear. And one very important case of this kind is a driven oscillator. So, you imagine
that you have your, you know the mass m, which is attached to your spring, which is being
kicked after every, by some external force where you can think of a cos(w ¢), but you can

also imagine; you know, giving it some impulse every, you know, so many seconds.

So, it can have a time period t associated corresponding to which there would be a frequency.
So but, suppose you imagine a cosine forcing function. You can have a square wave, you can
have a cosine wave, you can also have these delta pulses, you know all these kinds of
problems, one is interested in, one is you know it is easy to motivate directly from a physical

perspective.

And these kinds of problems are also very closely related to circuits. You know circuit
phenomenon, where you have an voltage and some resistive element, capacitive element. So,
you can have LCR circuit, right and which, each of these components of your circuit would
perform roles, which will eventually come down to a differential equation of this type. And

you have an external voltage.

And that voltage could be quite easily designed to be an AC voltage. And then you would get
something like F cos(w f), right so, once you have solved this problem from a mechanical
point-of-view, it would be very straightforward to work this out on a circuit as well, right,
which is something, I will urge you to do and perhaps there would be a homework of this

kind.

And so, it could also well be that, my colleague Ambar would describe some of these
problems in the circuit language. And I might give you the mechanical version of it just so

that, you see different flavors, but basically it is really the same differential equation and you



should be able to spot either of these and realize that really they are manifestations of the

Ssame.

Okay, so, the first step in dealing with differential equations of this kind is to do a
non-dimensionalization, right. We try to emphasize this repeatedly, that it is useful to take a
differential equation and tear apart; you know all the stuffs which is not essential, when you

are putting it on to a computer.

Eventually, we want to put this kind of a differential equation on a computer and solve it
numerically. That is one of the tasks, right. So, ofcourse, in this case, we will show you how
in fact there is an analytical solution as well possible. So, but the first step is to
non-dimensionalize the equation, by choosing suitable scales; expressing the equation in

dimensionless quantities.

So, if you want, you can pause the video now here and try to work this out. I actually urge
you to do this. And then, after you have done your own version of non-dimensionalization,
you can cross check against the version that I have here, right, so then once you have

non-dimensionalize.

So, right now you see that this equation has a mass m, there is another parameter & then there

is another parameter w. So, there seems to be lot of parameters, “n, I said was a useful

1.
quantity to define this equal to V kim

So, how many parameters would remain, after you have carried out this
non-dimensionalization exercise, right? So this is an exercise, worth doing and I urge you to

pause the video and carry it out yourself. So, my own solution is the following.
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After nos-demensiomalization. there is oaly one free parameter namely the driving frequency s which is Jeft in the problem

Lt us axeunss that (he initial conditins fior this probdesn in dimsensioalew sits is given by ollj=| and il = 0.

This is a second oner differential equation which cam be solved exacily asalytically for all fmmes. However, it is instructive to just focus on the sicady stai
times, the motion of the particle would be entirely domimsted by the driving frequency and it is natural so geess that the system simply oscillates wi
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Xl = € cosfu 1),

‘where the comtant {* noeds bo be deiormimed

So, I spot that there is this w scale. Right; “0 = V kefm , it is the natural frequency of your

oscillations, even when there is no external, external force being applied to the system. From

. . . . .. . RSy ey B
which, we can derive a time scale. Time scale is just 1/%0. So, itis V '/ k .

And then acceleration, right. Acceleration is something that comes from my force, the
external force. The amplitude of the externally applied force is . And I have this mass m.
So, I have a natural acceleration scale, which is F/m. And therefore, I can actually get a

distance scale.



So, distance scale is V@17 right, which I could have equally got by directly doing F/k,
right. So, F'is equal to, force is k x. So, I have these, all these scales. Some of these are

actually derived scales. Some of these, they all come down from “0 and from this F.

And what I am going to do now is, go back to my original differential equation, equation
number 2 and then non-dimensionalize it. So, the technique to non-dimensionalize is simply
wherever you have a dimensionful quantity, you just replace that quantity by the scale times

that quantity.

And then, lot of cancellations will happen and then you will end up with an equation, which
has no, which has been non-dimensionalized. So, in place of x, I will put F/(k x) in place,

wherever I see ¢, I will put 1 by “0¢ and wherever I have w, I will put «n &/,

9
So, when I do this, I get my left-hand side is m d’x/dt> will become m F/k “0, d*x/dt>,

right, so I have, so in place of x I have (F/k) x and in place of ¢, in the denominator, #, right,

3 .2
in the denominator I have 1/(1 — “0) ¢. So, it becomes on the left side F/k “, I have.

And likewise, on the right-hand side, [ have —k F/kx + F cos(wt). wt will just remain

14, .
wt, because you are going to replace w by “o «w and ¢ by 1w #, So, they get cancelled.
And now you have the final equation, which is just simply d*x/dt* = —x + cos(wf),

right.

And here, we have a non-dimensionalized equation right. So, these quan-, here you have a
driving frequency omega, which is actually it does not have any dimensions. It is a
dimensionless quantity. Now, this is a pure differential equation, which is a mathematical
equation. And then you will have to; at later stage, once you have solved this, will have to go

back and interpret what x means or in this non dimensionalized units, okay.

So, what is the problem we have? So, let us assume that we have to give also some initial
conditions. Suppose we give the initial conditions for this problem, wherein (non-dimen) in
dimensionless units, if you have x(¢) = 0, is equal to 1 and the speed of your particle is at

time ¢ = 0, is also taken to be 0.



So, this is the second order differential equation, which can be solved exactly, analytically for
all times. And we will talk about how to do this. But however, it is actually, it is useful to
consider what happens to this, in the limit of very large times. So, this is what is called a

steady state solution of this problem.

And to get to the steady state solution, we can make an educated guess, also known as ansatz,
sometimes. And that ansatz is simply C cos(w ¢). You try to mimic just the forcing term, so
it is as if for a very large times, the system has forgotten its initial conditions in some sense.

And it is only, it is the drive, which is causing it to closely mimic the drive itself.
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If we I:Mllﬂ the anaaty i (e differentsd Guualion Wi have
= C o’ costurt) » =Ccou f) + cosiw),

which yields

|
Clw)s ——

1- o

A plot of the square of the amplitude 35 & famction of i is instructive. 1t tells how the strength of the ascillations would be in the steady state depending o
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1
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Plot[Csq[u], {v, 8 2}, PlotRange + Automatic, Axeslabel + [u, C'}]
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So, now if you directly plug in this ansatz into the differential equation, into equation number
5, can you extract a constant ¢ and find out how it varies as a function or omega and make a

plot of this using Mathematica and see what it means, right, so this is an exercise, which you

should do before I show you the solution.

So, I urge you to pause the video at this point, work this out for yourself and then continue
the video, right. So, here is my solution. If I implant this guess C cos(wf), into the

differential equation, then I have the left-hand side is simply, — C w* cos(w f). And then the

right-hand side is C cos(wt) + cos(wt).




Therefore, I can go ahead and solve for C(w) and I get 1/(1-w?). So, what does this tell me?
This tells me that it is possible to find a solution of this kind and this will in fact turn out to
be the steady state solution. And in fact, you see that if I were to buy this solution 1/(1-w?)

cos(w t), you see that there is no connection of this solution to the initial condition.

It does not matter what my, where I was initially and what my speed initially was, the steady
state solution will always be reached, because it depends purely on the external drive. So, we
will discuss this in a moment. But let us understand what is going on with this coefficient C(

).

So, the amplitude squared is of interest, it tells you of the strength of these oscillations. So, if
I were to make a plot of this, this is what it looks like. I have written it down, okay let me do

this. And then I plot it. If I plot it, so, I notice that there is something weird going on at w = 1.

In fact, the system totally, the amplitude totally blows up at w = 1. And if [ pause to think for
a moment, I realize that this is not such a surprise. So, what is going on here is, the concept is
known as resonance, right, so this is a familiar concept maybe you have seen it in the course

on waves or you know some oscillations type of course.

So, it is sometimes a desirable thing, sometimes something that you want to avoid. Okay, so
here I have a plot of this amplitude square, so we see that it blows up at w = 1. And this is a
signature of resonance. Resonance is the condition, where you know, if you drive your

system at a very special frequency, which in this case is its natural frequency.

So then, somehow this is to the external force is conspiring, with the internal mechanism of
your particle, you know at your mass m to make the amplitude you know, very-very large,
right. So, resonance is sometimes a desirable point to drive our system at. At other times, you

might want to stay away from resonance.

So, one example is you know that of armies which are marching across bridges they are often
advised to not march in step, when they are walking along on a, on a bridge so as not to
inadvertently become a driving force, which is by some chance, if the natural frequency of
the bridge matches exactly with the frequency with which the army is marching on it, it may

result in, you know a catastrophe, where the bridge may even collapse.



So, that is a context, where resonance is not desirable. It must be prevented. But there are
other situations, where you want to drive your system at resonance, so that you can generate

these high amplitudes, right, so let us move on.
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Full Solution of the Driven Oscillator,

The steady state solution we have obtained is surely not the full solution of the differential equation, because all the information abowt the initial conditions is missing! In Eact. the sieady stase
salution hetier not depend on initial conditions, becawse weady state is 3 loag-tme phenomenan and the system should get to there regandless of where it started. Al a second ander
differential equation must kave ko two free comstants, which are fixed with the help of the inital conditions. This isformation plays out cracially when we consider the transient behavior ol
the sysiem.

What we have alrrady found ai a eady stale obation is <alled 3 particular solution. The théary ays tha the full peseral solution i oblained by simply adding 10 this particular solution what
i called the ommplementary solutiom of the commponding bomogeneoss differontial equation, which i this i is simply

d'x =
===k
dr

Exercise
{n) Finsd the general complementary solution x, (1) ol the honogencoss differential equation shave. How many froe comtamts docs it comain?
b} Now wrike down the Full peneral solution of the problem as aif) = A7) + x.07). Check tha this solufion works explicitly by plugging into the ariginal Jiff
b Now plug s the kninlal conditions to fix the free comtasts,
) Phet the sohutio for & range of the driving froquescy . Discuss the solution,
e What about resonant driving? What is the sobation i this problesn” Take the limit approgriaiely o exiraci the solution at this point.

Solution
{n) The complementary sobution is of coune well known:
1 EER A ]
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i = = =k = x+ Foosin)
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B (8)
dx
o w =X+ 08l )
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Afice poa-damensacmalization, tsere is oaly one froe parameter namely the driving frequency w which i lefl i the problem.

Lt us mssusme thai the inital cond o ths presilesn it s grven by aflfjm | and D) = 0,

Thas s 4 wocond anler difforential equation which ca b solved easlly asalytically for all times, Howgver, i is instroctive to jusd fiosus on the igady stale behavior of this syvom. For long
timas, the mothon of the particl would be entirely domisated by the driving frequoncy and il is natural b geeas tha the systom simply ascillaies with the driving froguency. 5o for the sizady
state sy can make the dcatod guoss (somecties called an stz )

Xll) = C coslu 1), 6
where the comitant { noeds o be determined.
Exercise

{6 Imyplant the anssts o the differential oquation sad work oul Ol
{u Plot 1€, Explain what it meass,

Solution

1f we iemplast the ansats o the differential quation we bave

- Cof cosiw) = =Cooslusd) + cosf), )

So, thinking about this whole thing as just a pure differential equation. So, the theory of
differential equation, in fact tells us that there is something called a particular solution and a
complementary solution. So, in this case, the steady state solution turns out to be a particular

solution.



So, as you can see, it explicitly holds out right. If you choose your C to be this particular
value, you can go ahead and plug back it into this equation. And then it is going to work out;

no matter what time it is, right. So, this is an exact equality.

But often times, if you want, you want to get the full general solution, so this does not give
you the full general solution, it is just a particular solution. If you want to get a full general
solution, you must one way to do this and a very clever way to do this, is in fact to solve the

corresponding homogeneous differential equation.

Homogeneous differential equation simply means there is no driving term. So, you take this

original equation you had d?x/dt* =

—x + cos(w t). And then you remove this driving
part. So, then you are left with a homogeneous differential equation, which is relatively

easier to solve.

In fact, in our case we know, we already know the solution. So, if you pull out the general
solution of the homogeneous differential equation and you just simply add it to your one
particular solution, then that gives you your, gives you the full general solution of the full

problem, this is the theory, right and it is also intuitive why this should work out, right?

If you take any solution to this differential equation, d*x/dt> = —x , then it is not a surprise,
that if you can, you can just take a solution of this differential equation and add it to a
particular solution. And it should still work out in other case, because you have this extra

added term.

You know this part is going to, is only going to give you 0, right it is going to cancel out and
the particular solution in anyway going to respect the full differential equation. So, if you are
a little bit unconvinced about this, I urge you to explicitly take xp and xc which I will tell you

what it is in a moment.

And then plug this back into your original differential equation and check for yourself, that
indeed it is going to be a solution of the full driven oscillator problem, right. So, this is a

standard and quite a beautiful method of solving differential equations of this kind.

So, what is a general solution of d?x/dt?> = —x ? With that, we already know. And so, that

is the complementary solution. So, once again I urge you to look at exercises a, b and c. And



pause the video, solve for these before you proceed. So, if you make this into a habit, then

your learning is is enhanced.

You actively try out something and then cross check against my solution. Perhaps you have
an alternate way of doing things and maybe there is more learning, which comes out when
you have multiple approaches. Okay so in fact you have, there is a, b, ¢, d, e all of which you

should try out. Pause the video now try out a, b, ¢, d, € and then look at the solution.

(Refer Slide Time: 20:16)
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Solution
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XA} = e cos(r) + &3 sinli) (1111
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b} We are now ready 1o write down the fiull general solution af the original differential oquation:
A I
1) = ¢y coslr) + ca sinif) + e coslu ) i
-t

fch Now plugging in the initial condifsons we have

1
W) m b —nl
1=-u

[1H]
i) = e =0,

! i
Btz s |-u cosif) + cosfu ]
=

‘which is the full salution of the problem.

1) N we plo dhis solution :

~u?Cos[t] + Cos[ut
Haninulate[PlutIuer

- 1 (%0, 1060), Plotlabel+u], (s, 6, 2],

1=u
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W= cpe——=l

1-w

W) = ey = 0,
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-

shich is the full sclution of the problem

1) N we plo s solution |

[-w" Cos[t] + Cos[wt])
’ Haninu‘l.lte[Plot[_12—, (t, 8, 1668}, Plotlabel -+ -.] (05 0, 21]

05}




i) = ey + == |
1=w*

i) o= =0

| M 1
=)= : |- e + cosfua ]
P

‘which s the full saltion of the problem.
i) Now we plot this solution

-u”Cos[t] + Cos[ut])

" Haninulate[Plut[t » {1, 0, 1000}, PlotlLabel+], {4, 6, 2}

1-42
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The complementary solution is, is well-known, right, it is simply c1 cos(¢) + ¢2 sin(t). So,
this ¢/ and c¢2 are arbitrary constants. And they have to be fixed, based on initial conditions,
right so this is where the initial conditions are hidden. The initial conditions are hidden in the

complementary solution.

So, I told, I gave you the, particular solution has somehow washed away the initial condition,
which is what you expect because a steady state must in fact lose all the information about
where the system started from. So, in that sense, the particular solution better not carry any

information about the initial conditions.

But here, ¢/ and c¢2 are 2 free constants, which we can determine based on the initial
conditions. So, we will do that in a moment. Right, so this is a general solution. And the
general solution of the full in-homogeneous differential equation, in-homogeneous in other
words the forced differential equation. The driven oscillator problem 1is simply

cl cos(t) + 2 sin(t)+ 1/1 —w?* cos(w ©).

So, I told you it is as simple as that. You take the full general solution of the complementary
solution. And then simply add it to the particular (sol) and you are done. This is the full

general solution of the differential equation. And then we plug in the initial conditions.

We have told that x(0) =1, 2(0) = U, And this tells us that in our problem, we must fix

our ¢/ to be 1-(1/1 —w?) and c2 to be 0. And lo and behold, we have the full final answer.



This is the full solution for our particular problem. It has embedded in it, information about

the initial conditions.

So, x(#) is; now here I can go ahead and put x(0), I can do 2(0) and they will agree with the
initial conditions that have been specified. Right so, now that we have the full solution, we
can go ahead and plot it. Once again, I use this very nice comment called manipulate where I

can vary this parameter omega and check out what it looks like.

So, I have when omega equal to 0, of course nothing is happening. And then I can slowly
increase @ and then I see, I get a, you know, oscillatory solution, which is not a surprise

looking at the kind of function, the form that I am plotting.

(Refer Slide Time: 23:14)
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(-w* Cos[t] + Cos[ut])

Hanipulate[Pl ot [ e
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which is the full salution of the problem.

i) Now we plo ibis solution :

[-w" Cos[t] + Cos[wt])

Haninu‘l.ate[Plot[ ; , (t, 8, 1068}, ﬂouam--.], (w8, 2}]
=

0968
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which is the full slution of the probiem
{d) N we plot this solution

[-w" Cos[t] + Cos[wt])
Hanipulate Plot [ ~———————, (t, 8, 1069) , Plottabel 4], (¢, 6, 2)|
=y
0.882
&0
n
-
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- - — - e

2

which is e full slution of the probiem
) Now we plot this solution

(-4* Cos[t] + Cos[ut])

Hanipu\ate[not[ 1 1t, 9, 1060) , PlotLabel s, {2, 6, 2}]
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So, what is very interesting is what happens as we go closer and closer to w = 1, right, so [
told you that the resonance happens at w = 1. But if I am not sitting at w, but very close to @
= 1, then I see these oscillations, but with a slightly different frequency. That is like a
amplitude modulation happening here, right. So and if you think for a moment, you realize

that this is really, all that is happening is some kind of beat phenomenon, right?

So, here we have I am trying to superpose 2 cosines. If both of these cosines; the frequencies
corresponding to them are close to each other, that is when the beat phenomenon is evident.

So, this is something that I urge you to go back and play with.
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So, if you are sitting at one, of course it will not be seen. So, around 0.99 is when you see
beat phenomenon in a very nice way. 0.99 is difficult to interpret, I guess. Okay so, this is

something for you to play with. Right, so, this is a plot.
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{0 Find the g ! ry solution £, (1) of the 3 difl | exquation aberve. How masy free conuases does if comun?
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2} Now phug i the imitial conditions to fix the free constants.

) Phen the solutice fur & runpe of the driving frequency . Discuss the soluton,
e} What about resonant driving? What is the solistion 1o this probeen” Take the limil approprialely o exiract the soluon af this point

Solution

1) The complementary sotation is of course well known:
XAr) = ey osir) + 3 sinfe) {10}

Sinoe it the pencral sobation of 4 second-oeder differential equation 7 better have two free constants, and # dors.

b} We are now ready io wrile down the full general solution af the origisal differential equatics:
. I
xf) = ¢y coslr) + 3 sinif) + —— cosfui)
1-o
e} Now phuggiag in the initial conditions we have
1
) = e+ == |
1=w

e el

[
)= —— |-u cosi) + cosiu )]
=&

which ix fhe full wihition of the pmblem
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Now, let us ask the question. What happens when, if I put w = 1, right? After all, I have an
external forcing term. I am free to choose this external forcing frequency, to be whatever |

want.

So, but if it looks like if I just blindly put omega equal to 1 in this solution, it seems like it is
going to blow up. So, why should I get a solution, which is blowing up, when the original
differential equation is completely legitimate. There is no, if I had started my problem with
the differential equation itself, if I had started with @ = 1 and built in it, I should have been

able to work out the full solution of it, which is ofcourse the case.



But it turns out that, what you have to do here is you cannot blindly just put w = 1, but you
must carefully take the limit. So, it is of the 0/0 form and if you take the limit so, this is an
exercise for you to do, right. I am not doing it here. But it is just a quick exercise, if you are

familiar with this kind of stuff, which I assume you are.

You can use for example; the L'Hospital's rule. You take a derivative of the function in the
numerator and derivative of the function in the denominator and then take the, put the limit @

going to 1.

Then you will get x(¢) = cos(¢) + /2 sin(t), right, so this is, so a remark here is that, if you
take a course on differential equation at some point, or if you might have already seen it, you
will see that there are certain very special cases, where one has to be careful with the ansatz

one makes.

And so, depending upon, depending upon the nature of the forcing term. So, you have
cos(w t). If w is a certain value, which is connected to a certain route of a quadratic
equation on the left-hand side, if it turns out to be equal to that one, right. I mean I am not

going to give you the details, so that you can look up some textbook on differential equations.

Then the correct ansatz will be actually ¢sin(¢). So, this factor of # would come in, even
within the formal theory of differential equations itself. So, that way you could have got to
this solution directly. If you had started your original differential equation itself, put w = 1

and worked it out, then you would have had to you know implant this ¢ sin(z) itself.

So, this is an exercise for you to try and carry out. But if you missed this remark, or if you did
not follow this remark, maybe you should just wait till you encounter the theory of
differential equations in some slightly more advanced course. But for now, let us say that just

taking the limit w = 1 in the right way, will already give us this solution. So, let us plot this.
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Plotting is very instructive. So, we see that, as for larger and larger time, the amplitude keeps
on increasing; right. So, there is a very systematic way, in which the amplitude will keep
increasing. And if I take the limit # going to infinity, then I have these oscillations become

really large. And, so this is something that we have already seen, right.

Where we saw, we saw that the square of the amplitude of the steady state solution is infinite
at w = 1. So, we are considering this w = 1 case. But we are looking at the full solution; x(¢)
as a function of time is completely well-defined, because this is the, this includes the

transients, right. So, there is a transient part and there is a part which is called the steady state.

So and at any finite time, there is a very precise value of x(¢), right. It is just that, you see
from this plot, that for larger and larger times, the amplitude of oscillations becomes
very-very large, so this is quite instructive. So, by the way, you could have also used or we
could have taken Mathematica’s help to evaluate this limit. So, there is this function called

limit.

You can just plug in the function there and take the limit @ going to 1, it will give you
cos(t) + 1/2 tsin(¢t), which is what we obtained analytically, right so Mathematica is a

powerful tool to cross check your results.

Sometimes, sometimes it is good to have multiple ways of checking, right, so it is a, even

though Mathematica can directly do it for you, it is better to use it as a cross checking device.



First, do it yourself and then get Mathematica to do it, cross check and then depend entirely
on Mathematica only for problems, where you cannot do it. Like for example, hardcore
numeric, so that is why we should do a lot of checks for small cases, simple cases and then

stretch it to the more difficult cases later on. So, it is a standard tool.

So, now what we want to do? We want to see, if we can reproduce this from a purely
numerical method right, which is in the spirit of this whole course, which is in the spirit, or

the philosophy behind this course is to find a numerical perspective for this.

(Refer Slide Time: 30:15)

LEE] W [}

Numerical Solution with the Euler’s Method

# Leis recall how we can bring a higher onder differential equation into the canonical form;
ru fli, X %2
Yyegitx x5 2 [{L)]
t=hin g ya
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# Then the couphed ODES can be writlen as

# Euler’s method is given by

Xo = Nt
Xt = X, + hFiX,}

 Here we have copied its implementation.
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So, let us recall how we can take any higher order differential equation and put it into the
canonical form. Right so, I told you that this differential equation that we have is linear, but
it is of order 2, second order linear differential equation, inhomogeneous differential
equation. That is the classification from a differential equation point-of-view. So, no matter
what the order of your differential equation is, it is possible to bring it down to effectively

first order.

But involving more variables and that is the form that is most suitable for the application of a
numerical method, right like the Euler's method is the simplest numerical way of solving a

differential equation. If you have only one variable, all it entails is, saying okay, if I want to

N
- :E'” ."I ﬂl .

solve dx/dt is equal to some function x, ¢ or I will replace dx/dtby n+1



So, Tn+l = ¥n+ A times, the derivative at that point right, numerical. And then you go to
the next step. And then you go to the next step and you slowly build it up. And there is a
small delta, right, which controls the accuracy of your numerical method. The smaller it is the
more accurate it is. And if you want a greater accuracy, you will have to shrink your delta and

therefore, it will consume more resources.

So, later on we will see how you can dramatically improve the efficiency of this method, by
doing some small modification. So, there is something called the improved Euler method.
And then there is a more fancy one, which is called the Runge-Kutta method. So, improved

Euler method itself is a, is a form of the RK methods.

So, we will discuss these at a later time. But for now, let us recall how to recast our higher
order differential equation into the canonical form. So, what you do is you just simply

introduce more variables. So, you had . So but you define & itself as y. So, in this case, let

us do this.

So, I have, we will see that example in a moment, right so, if you have & = F, Y = G and
% = H, you can rewrite your whole equation as the derivative of a vector & = F . And
that Euler's method simply gives you 0 = Tinitial and Tn+1 = n T H * Flay, ), which

is what I just said. And which will be discussed in a separate video in detail, right.
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# Euler’s method is given by

Xon T
T
Xout = Xy +hEX) i

# Here we have copied its implementation,

we eulerGen(F , X8 , tf , nMax_] 1e Module((h, datalist, prev, next, rate},
b (2F = XOELN) / oMax /7 W
For[datalist « (¥4},
Length[datalist] s n¥ax,
AppendTo|datalist, next],
priv = Lagt [datalist];
rate s Through [F M prev);
next = prev s hrate}
i
Return[datalist];
1

# The differential equation coresponding to the driven oscillator can be recast into canonical form as:

dx
el
dv
7 ==X+ ooslu )
=1

vlj=0

B
) e ' ¥ n—
an
Length[datalist] s a¥ax,;
AppendTa(datalist, next],
prev s Last [datalist];
rate = Through [F e prav];
next epreveh ratej
li
Return[datalist];
1
 The differential equation comesponding to the driven oscillator can be recast into canonical form as:
dx
e
dt
dv
= = =X + Coslu 1) (18
di
=1
wl=0
* 50 in vector form we have:
! I
x=l.:| F =| ¥ ‘
¥ =k + o0ilw ) 9
X=F

= 1usm rurrsemad e i fhas Frnctinne and tha initial sartor

So, we have this implementation of the Euler general method, which was carried out in an
earlier video, which you should go back and watch. So, I am not going to go into the details
of this, right so, this is basically implementing this algorithm. So, there is a nice way of, a
compact way of putting all these together in inputs and then here I have got, I have just

borrowed this code.

I am going to run this and then use it. So, first I have to, even if I have to use this as a black

box, I should know how to input stuff, how to output stuff, how to analyze it, right? So, my



differential equation is d?x/dt® plus bla-bla-bla. So, first I am going to introduce the new

variable dx/dt = v.Then I have dv/dt = —x + cos(w f). So, that is enough.

So, I have only 2 variables. And then I have x(0) =1, v(0) = 0. So, in vector form, I have

capital X = ¢, is also defined as a variable here, because it is convenient to do numerics in this

way. Then my differential equation can be just simply written down as X =Fltisa
effectively first order differential equation, but for a vector now. Then I have to define my

identity, right.

(Refer Slide Time: 34:31)

[T EXR I ]
dy
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dr
=1
wi=0

80 fn vector form we have:

' 1

X= I F | ¥

v =X+ o0s{w )
X=F

(1%

# 50 we proceed to define the functions and the iitial vector:
i TA[E, 5, vl d;

MOt[t ; o, ¥ )=y}
vliot[t , x_, v ]w=xsCosfut]]
fnitial« {0, 1, 0);

® Now we are ready to invoke the Euler lunction:
we 0.9
data « eulerGen|{Id, sDat, vDot), initial, 108, 200M);
ﬂ!e-EI.H:PIotldnul 350 1i3 20, Jeined + True, PlotMarkers - Hone, PlotRange - Full],

-l Con[t] s Confut
m:|{' [t]  Cosfut])

s 5 (t; 0, 188}, PlotRange - Full, PlotStyle « nou]];
1-¥

# §o we proceed 10 define the fanctions and the initial vector:
ps TALE, X, v ]el)
Dokt , x_, v ]wvy
vbatt , ¥ , v ]w=xeCosfut]]
fnitial = (9, 1, 03}
® Now we are ready to invoke the Euler function:
1ijps @ w 0.9
data « eulerGen[(1d, xbot, vDot), nitial, 100, 10000];
MEUI!PWNOHII 80 113 20, Joined -+ True, PlotMarkers -« None, PlotRange - Full],

it (- Casfe) + Cosfut))
1

J 1ty 6, 168, PlotRange + Full, Platstyle +Red]|

10

-1




So, I will define an identity function. So, it takes in the input of time, position and speed ¢, x

and v. But it just gives me 1, because [ know that X =FifIlook at the first row, I just want

it to be 1.

To get the second row, I use & = v. So, all of this I implement in one cell. There you go.
And then I also have to define my initial vector. So, I know that at time ¢ = 0, my position is 1
and speed is 0. And then if I, if I choose a certain omega and then I can simply go ahead and

implement this. So, I have to put in the, these functions Is @ and 1.

Then I have to give you the initial condition, which I have already written down here 010.
Then I have to choose these numbers 100 and 10 000. So, 100 is gives me the time steps, up

to which [ am going to run my simulation, up to a certain time t. And that is chosen to be 100.

And 10 000 is, is where the information about the individual time step. So, the larger this
number here is, the more fine the simulation is. And so the more accurate it is going to be,
right. So of course the flip side is that it is going to take longer for your code to run. So, let
me run this for 10 000. So, I have the data has come out all the way. And I am going to

compare against the analytical solution I have, there you go.

So, you see that the agreement is good but around these bends, it is somewhat, it misses the
details, right so this has to do with the fact that, you know whenever there are these kind of
bends, the derivative is inaccurate. And the inaccuracy in the derivative is exaggerated. And
therefore, the agreement between the numerics and the theory is not that great. So, you can

go ahead and play with this. So, maybe I will try one more.
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S0 we proceed 10 define the functions and the initial vector:
s 1AM, &, )0}

wet[i_, x_, v ]uvj
vot[t , & , v Jw-xeCosfut];
fnitdal = {0, 1, 0}

» Now we are ready to invoke the Euler function:

e e 0.9
data « eulerGen|{Id, xDet, wDot}, initial, 100, 20000);
ﬂ!e-il.\llPlv(Idl(ll 350 11320, Jedned 4 True, PlotMirkers -+ Hone, PlotRange - Full],

[~ Con[t] o Cos )

1-4

Flct! i (t; 8; 188}, Pl nge - Full; Platstqu-luﬂ”
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If I make this 20000 let us see if the accuracy becomes better. It has become slightly better.
But, but if you want to really increase it to a much larger time, it is going to take a while for it
to run. So, I will allow you to play with this. But a better thing to do is, actually to improve

the quality of your algorithm, right.

So, you can use something called the Improved Euler function method, which we will discuss
at some point or it is going to be part of our home-work. And even better than Improved
Euler is the RK 4 method, which is also something that we will discuss after some time. So,

let us see what happens, if [ put omega equal to 1.
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So, if I put w = 1, it is going to take a while. So, there you go. Once again, we see that surely
there is very good agreement. But it is not, it is not exact, the agreement between the

analytical curve and the purely numerical run.

And it is going to miss by a larger and larger margin, as time increases, particularly around
these, the point of highest amplitude and point of lowest amplitude, right. Whenever the
system is turning around sharply, that is where the information about the derivative is not so

accurate.

Okay so, that is what I wanted to cover in this module. So, the main message here is that
there is the physics of the driven oscillator comes out very nicely. So, a full analytical
solution is possible. And with the help of Mathematica or with the help of a numerical tool,
like the Euler Method, which is a very-very simple way to solve a differential equation. And
we show that it is possible to solve it numerically and the 2 approaches give us results, which

agree very closely.

And if you want to make the agreement better and better, you must choose your
discretization. You must make, you know the runs in your numerical program, the times

involved for, you know the incremental time involved should become smaller and smaller.

Right so, there are details of how the error scales with A and so on is not the focus of this
course. But if you take a course on numerical methods or you know computation methods
and so on, there is a very systematic and mathematical way to work out the strength or

weakness of an algorithm quantitatively.

You can say why Euler method is you know the errors are of a certain order and how
Improved Euler is better and how RK4 is even better and so on. But let us not go into that,
that is not the focus of this course, at least at this point. The main message here is of course

these 2 methods work and we should go back and play more.

And so, the one thing that you should try out is, to work out the same problem for the circuit
equivalent. And the other thing is to include a damping term. So, you know the same kind of
techniques will hold, you can have a damping term where, you know there is a frictional

force, which tends to slow down your particle.



The greater its speed, the smaller its, so the greater is the frictional force. So, you can have a
term like d’x/dt* +x but also something like dx/d¢ with a constant v —b dx/dt in the
original equation. So, that is also worth trying out. But that is it for now. We will come back

with more improved methods in the next morning. Thank you.



