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Welcome back to Physics through Computational Thinking. Today we are going to talk about

Improved Euler method. Last time we looked at Euler method and we saw that it takes to get

an accurate calculation it takes a long time. So, look at the Improved Euler method which can

get us desired accuracy in less number of steps or less number of, for a larger value of this

step size h. We will further into this method using by using Range-Kutta Fourth order

method.

Range-Kutta Fourth order method can get you even higher accuracy with even larger step

size. And we will compare this methods for solving Ordinary Differential Equations. So, this

will be a target of this particular lecture. So, let us go ahead and get started.
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eulerImp[F , X@_, tf , nMax_] =

Hodulel{w, datalist, prev, nextl, next, rate, ratel},

h= (tf - XO[1]) / nMax f} N;
Fnrldntam‘: = (X8},

Length[datalist] s nMax,
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So, improved Euler method has a local error of order 4° and global error of order A*. In
comparison to Euler method which has a local error of order 4#* and a global error of order A

. This is slightly better because the local error here is order 4 and global error is order 4.

So, let us see how Euler, improved Euler method defined, then I am going to give you a proof
of this but we will illustrate it through a graphical image. So the (Euler), notice the difference
in comparison to the Euler method. Time increment happens in the same way as the Euler
method. And in the Euler method, we determined the next value of x by adding to the x and

the previous value of x h times derivative.

Evaluate the previous value ¢,, x,. So, this was the Euler method, the first two lines, define



the Euler method. In the improved Euler method, what we do is, we take, we determine x
by adding to x, improved value of the derivative. The improve value of the derivative is
obtained by the value of the derivative at the previous point t#, x, plus the value of the
derivative at the new point #,,, and x ., is the value of x, that is determined by the Euler

method.

So, this is the value of derivative at the previous point and here we have got the value of
derivative at the point which is determined by the Euler method. We take the average of these
two points and then multiply by the step size 4 and that gives me the step in x, I add that to

x, and that gives me the value of x, ., according to the improved Euler method.

Now, the value of x,,, determine this way is more accurate than value of the x,,, determine
by the Euler method that is by this step. I will give you a graphical proof of this or a graphical

illustration of this rather. So, let us go ahead and take a look at that.

So, let us take x axis as time axis and y axis as the x axis and we want to find the solutions
from some ¢, to . Now, let us say, our solution, let us say our true solution that is
something that we assume to already know. Then the true solution let us say it looks like that

from ¢, to . And this is some value of ¢, .

This is tn and corresponding to that this is x, . I want to determine the next value, that is the
tn plus 1. This is 7, . The distance between #, and 7 _, is h and I want to determine the
value of the function over here using the derivatives. So, I for this problem the ODE, I know
the derivatives I do not know the true function but for the illustration purpose I am drawing

the true function assuming that I know it.

So, let us go ahead and see what Eulers method does and then we will compare with
improved Eulers method. In the Eulers method, we take the derivative at ¢, . The derivative
is this, we multiply that derivative by h, so we, so multiply that derivative by h, that gives us

the segment Ax.

This is h times f evaluated at #, and x, and that gives me the height change or the step size
and so from this point of view, my determined value of x, is over here. In fact, in order to

make it more dramatic so that you can see the difference. Let us go ahead and make this



curve have a higher gradient.

So, let us go ahead and say a function goes like that. And at this point tn, the derivative goes
like that. And for a distance h, this is h, I go ahead and I calculate Ax, so my new value, this
is my value according to Euler method. So the improved Euler method says that, just do not

take the first derivate but also take another derivative.

So, this was a derivative because the blue line is the derivative because of at the previous
point but improved Euler method says that, take also the derivative, take also the second

derivative which is evaluated at #,,; and x ,,, .

So, this is 7,,; and x ., at this point, the derivative has, has the value given by this line.
Then the Euler's method says, that find the average of these two derivatives, which is given
by the red line over here. so, let me label this. This is, this is derivative at ¢, and x,, . This is

derivative at?,, | x ., and this is the average of the two.

The average of the two, we take the average of the two, we translate that to the point over
here, to the previous point and then we multiply the step size h in it and that gives me a value
over here which answer being closer to the true value. So, let me do this again. Let me go

ahead and erase this whole thing and let me do this, demonstrate this again.
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eulerImp[F , X8 , tf , nMax ] i=
HDdule[{!‘., datalist, prev, nextl, next, rate, ratel},

h= (tf - Xa[1]) / nMax // N;
Fur[da:atiat = (X6},
Length[datalist] < nMax,
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Let us say this is the function, let us make h very big so that it is more clear, this is my point

t, and let us take ¢, farther away. Thisis 7, , so Euler’s method says, take the derivative

+10

over here, take the h multiply by that and this is the predicted point new predicted point by

the Euler’s method. So, this is the solution because of Euler’s method. Now, improved



Euler’s method says, that also take the derivative at this point.

This point that is the ¢, . So, let me actually correct that. So, at the functions value is

tn+l ’
over here. so, let me take the derivative at this point and find the average of the two
derivatives, which is this translate that to this point and then multiply by h which is travel the

distance h so, therefore it lands up somewhere over here.

So, you see that the blue value and this blue dot and this green dot. Blue dot is further away
from the true value where the green dot is solution or predicted point because of improved

Euler's method and this is much closer to the true solution.

So, we see that improved Euler's method can significantly improve over the Euler's method.
And this is just you take derivative at previous point, derivative at the predicted point and
then calculate a new derivative of the average of these derivatives and then take predict the
point again because of this average derivatives and this new value turns out to be much more

accurate.

Alright, so let us go back and see how to implement this. This is my improved Euler's
method. I can also write improved Euler's method in the following way. Inso, ¢, ,, is t, T h
is before and x, , is given by x, plus h times this fraction. This fraction is average of two
derivative, the first one determined at the previous point and the second one determined at

t,+h and x, + hf (t,,x,).

This is nothing but x, , determined by the Euler's method. So, we can go ahead and
implement this in one single we can write this in a single line and this is what we will use to

implement. And implementation is very similar to what we have done before.
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+Implmesisten ‘
eulerImp[F , X0 _, anHak_] H

Hodule[{h, datalist, prev, nextl, next, rate, ratel},

h= (tf - X8[1]) / nHax /1 N}
For[datalist = {X8),

Length[datalist] s nMax,
AppendTo[datalist, next],
prev = Last [datalist];

rate = Through[ F @@ prev];
nextl = prev + h rate}

ratel = Through[F @@ nextl];

BEFIM 4 = -

In[40a3]=

eulerImp[F_, X@_, tf , nMax_] i=
Hodule[{h, datalist, prev, nextl, next, rate, ratel},

h= (tf - X8[1]) / nMax /1 N
Fnr[dataHst= {xe},

Length[datalist] < nMax, O

AppendTo[datalist, next],
prev = Last [datalist];

rate = Through[F ee prev];
nextl = prev + hrate;

ratel = Through[ F @@ nextl];

h
next = prev + 5 (rate s ratel);

E

Return[datalist];

]

Biat

So, this time I will call the functions improved Euler method just to make a note that
improved Euler method is also known as the second order Range-Kutta method. So to
improve to define improved Euler method, we will work exactly as in the case of the Euler
method but we will make one distinction. We will introduce few more variables, local

variables in the module construct. We will introduce nextl, next, ratel and rate.

. . tft,‘ o . . o
So let us let us see how this works, h is calculated as before, (f—n)M ax . Initialization of data

list is as before. Condition checking is as before and incrementation is also as before, to data
list we add the next point but in the body we calculate the next point and this is how we do it.

These are the 4 steps of the body or 5 steps of the body which is where we are calculating the



next step.

So, first in order to calculate the next step, we find out the previous step, previous step is the
last element of data list then we calculate the rate by using the Through function, applying F
on the previous point. F is the set of derivatives, applying that on the previous point. Then
next is determined by nextl is determined by previous plus h rate. This is nothing but the

determination because of Euler method.

Now, we determine a new rate called the ratel by finding out the derivative at the point nextl
using Through function F applied at nextl and then we find the next point according to
improved Euler method by taking average of the rate and ratel and multiplying by h and
adding previous to it. Once you got that in over here, it is appended to data list and so on. So
this is the implementation of Euler method, the only changes here in the body and we return

the data list.

So, let me go ahead and execute that and that defines my Euler method. Let us go and check
out this Euler method, if it provides significant improvement over Improved Euler method, if

it provides significant improvement over Euler's method.



(Refer Slide Time: 14:31)

ElFdm 4 ]

Application of Improved Euler to Solve Damped Oscillator
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id[t_, charge , current ] =1}

chargeDot[t_, charge , current_] = current;
currentDot[t , charge , current ] = -wcharge - current;

initial = (8, 1, 8);
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id[t_; charge_ , current_ ] =1}

chargeDot[t , charge , current ] = current;

currentDot(t , charge_, curren@ -wcharge - current;

initial = (0, 1, 6};

2.01223

data = eulerImp[{id, chargeDot, currentDot}, initial, 18, 160];

Show[ListPlot [data[ ;5 , 13 2], Joined + True, PlotMarkers + N
PlotRange » Full], Plot[e ™™ Cos[beta t], {t, 8, 10}, PlotRa

So here is the application of Improved Euler method for solving the damped oscillator. Just

remind you damp oscillator equation was ‘% =1.And 4 = ﬁQ—l .

This is the term that is responsible for oscillation and minus I is responsible for damping,

initial conditions was Q(0) = 1. And 7 (0) = 0 and we decided to take the ratio == = w and

R°C
it shows the large value at w, w > }1 . So, this is what we have taken from our code that we

wrote last time.

So, we take w=10, B = '\/w—% then rest is same as before. We define the identity function

chargeDot and the current dot and initial valueat t=0,0=1,1=0.
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currentDot[t_, charge_, current_] = -wcharge - current;

initial = (0, 1, 0};
2.01223

Ir[404)
data = eulerImp[(id, chargeDot, currentDot), initial, 10, 100];

Injds)]
Show[ListPlot [data[ ;5 , 13 2], Joined » True, PlotMarkers -+ None,

PlotRange + Full], Plot[e "™ Cos[beta t], {t, 0, 10}, PlotRange + Full,
PlotStyle -+ Red] |

w405}

Oulf408]=
2.01223

In[415]:=
data = eulerImp[{id, chargeDot, currentDot}, initial, 18, 100];

In[418]=

Shw[ListPlot[data[ 135 133 21, Joined = True, PlotMarkers - None,
PlotRange - Full], Plot[e""/? Cos[beta t], {t, 0, 10}, PlotRange - Full,
PlotStyle -+ Red] |

Oulf416=
1]

Shw[ListPlot[dntnﬂ 333 {1, 3}1, Joined + True, PlotMarkers +

B

And now calculate data with improved Euler function that we have just defined rather than
Euler general function that we defined last time. So, let me go ahead and do that. And when I
do this, here is what I get. So, let me go ahead and this time evaluate or calculate my data
points using the improved Euler method this is same call as before, except that rather than

using the original method, I am using the improved Euler method.

So let me go and execute that and then I am going to do a comparison of plots over here and

we see that this is a fantastic agreement between the red curve and the black curve.

Where red curve is the expected solution and black curve is the numerical solution that we

have obtained using the improved Euler method.
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initial = {0, 1, 6};
Outl408]=

2.01223

n[417)=

data = eulerGen[{id, chargeDot, currentDot]}, initial, 1e];

Infd18]:=

Shw[ListPlot[dataﬂ 33 3 133 2], Joined = True, PlotMarkers - None,
PlotRange - Full], Plot[e""? Cos[beta t], {t, 0, 18}, PlotRange + Full,
PlotStyle - Red]]

In[425]:=

data = eulerImp[{id, chargeDot, currentDot}, initial, 18, 100];

1n[426]-=
Shw[ListPlot[dataq 33 3 133 2], Joined = True, PlotMarkers - None,

PlotRange -+ Full], Plot[e"""? Cos[beta t], {t, 0, 10}, PlotRange + Full,

PlotStyle - Red] |
Ouiasle

as
\\ O
| ] \/-\\.-/?"" 0 0]
a1

Shw[ListPlot[dataﬁ 53 » {1, 3}1, Joined » True, PlotMarkers -+ Non

1
PlatRange » Full], P'Lot[~ 2 ¢ Cos [t beta] - e/ beta Sin[t

Just to show you that, what happens when you use the original method that we use previous
last time. We see that we get a poor agreement. For nMax = 100. Notice that we are using

nMax = 100. We are getting a poor agreement with Euler general function.

We had to go to higher value of n max with the Euler general function to get some kind of
agreement but the moment we go to improved Euler method, we can do this with much lesser
points with only about 100 points we can get a fantastic agreement. Much better agreement

with the expected curve compares to the Euler improved method which completely fails.

Sorry, Euler general method which completely fails for 100 points. To show you again, is the

Euler general method with n max equal to 100 and tf equal to 10 therefore, h is 0.1. For h



equal to 0.1, we see that the, the Euler general method gives me a oscillation without any
damping which is completely incorrect. While Euler improved method gives a fantastic

agreement. You can play around with this.
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Inf427}:=

Shw[ListFlot[dntnﬁ 335 {1, 3}1, Joined + True, PlotMarkers -+ None,
I
PlotRange + Full], Plot[— 5 e /2 Cos[t beta] - /2 beta Sin[t beta],

{t, B, 20}, PlotStyle + Red, PlotRange - Fu'l'l”

Oul427}=

We can also compare the current, so this is the call for current where I extract from data time

and the first and the third component or the first and the third column and that also is in

fantastic agreement. So, this is current versus time and this is charge versus time.
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id(t_, charge_, current_ ] =1;
chargeDot(t_, charge , current_] = current;
currentDot([t_, charge_, current_] = -wcharge - current;
initial = {0, 1, 0};
Outj430]=
1.41383

Infd25]:=
data = eulerImp[{id, chargeDot, currentDot]}, initial, 18, 108];

In[426]:=
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data = eulerImp[{id, chargeDot, currentDot}, initial, 18, 200];

In[438]=
Shw[ListPlot{dataE 335 1133 21, Joined = True, PlotMarkers - None,

PlotRange - Full], Plot[e™""? Cos[beta t], {t, 0, 10}, PlotRange - Full,
Plotstyle + Red] ]
Out438)=

-8

Inf427]:=

Shw[ListPlut{data!I i3, {1, 3}1, Joined + True, PlotMarkers -+ None,

1
PlotRange -+ Full], P'I.ot[- = e/ Cos[t beta] - e betaSin[th

Lo mAL ey e .~ omyoam -l

So, let us go ahead and try a different value of w. Let us go ahead and say, make w = 20, so

that we see a few more oscillations, we will keep nMax as 10 as 100 and 1, as 10. Let us go

and try this out and we see that this is again is in good agreement.

But now that number of oscillations are higher, we need to increase this further so let us go
and make this 200. So, with nMax = 200, let us go and try this out and we see this is a
fantastic agreement again. And there is something that will be impossible with Euler general
method. So, you see that Euler's improved method provides significantly significant
improvement over Euler general method or Euler method. So, let us go ahead and further

improve this using the Fourth order Range-Kutta method.
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Fourth order Range-Kutta method is generalisation of improved Euler method or the second
order Range-Kutta method. In fourth order Range-Kutta method, local error goes like order

h> while the global error goes as order 4* and that is the reason this is called the 4™ order

Range-Kutta method.



The global error reduces down to h*. So, in the Euler method, it is %, in improved Euler
method or second order Range-Kutta, it is 4% and the fourth order Range-Kutta method is /*
The idea behind the fourth order Range-Kutta method is similar to the improved Euler
method. Again we find a more accurate value of the derivative that will give me a better

prediction for the next evaluation of the of the step size.

So, this is how it works in 1 dimension, ¢,,, =, + . Then we calculate k1 = hf (¢,,x,) . So,
this is the expected Ax. Then we calculate k2 = Af (tn +4 x, + 151’(1) . So, k1 was the step in
delta in in x it was expectation in Ax or it was an estimations of Ax and that estimation of

Ax 1is being used here to evaluate new value of k2.

So, k2 is again and again another estimation of Ax. And that is used to evaluate k3,
k3 =hf (tn +4 x, + %k2) , where k2 was another expectation or another estimation of Ax.
And then k4 = hf (¢, + h,x, + k3). So, this is another so k3 was another estimation of Ax and
k4 is another estimation of Ax. So, there are 4 different estimations of Ax I calculated over

here.

K1, k2, k3 and k4 then x is evaluated as taking the weighted average of these 4

n+l
expectations of Ax or 4 estimations of Ax, k1, k2, k3 and k4. So, weighted average k1 has a
multiplier factor 2, k2 is a multiplier factor, k1 has a multiplier factor 1, k2 and k3 is a

multiplier factor 2, and k4 is a multiplier factor 1.

We add all the k’s and then divide by 6, this the weighted average of all those estimations of
Ax we add that to Ax. And that gives me determination of x,,, . So, we are now going to
present the proof of this, even graphical representation is bit tricky which you invited to try

on your own graphical representation.

One will prove this mathematically, where the proof is extremely lengthy, so what we are
going to do is, we are not going to go over the mathematical proof is not in the interest of this
course. But what we will do is, we will take this for its face value, we will evaluate it and try

it out and see how it provides a improvement.

So, let us go ahead and implement this. In order to implement this, what we will do is, we
will redefine this Range-Kutta method in the following way in terms of rather then

estimations of x what we will do is, we define a terms of rates because that is how we

nt+l °



have implemented our code.

So, what we will do is, we will define r1 as klz , that is, r1 is my first rate, that is evaluated at
(t,,x,). Then r2 is another estimation of rate that is evaluated at z, +% and x, + (%)Vl,
(4)r1 is estimation for Ax. Thenr3 is again #, + 4 and x,+(4)72 and r4 is k% which is

evaluated at ¢, + /4 and x, + hr3.

So, now taking these 4 rates, we will find the weighted average of rates by using this formula.
Multiply that with h and add to x, . So, let us go ahead and use this to implement our code.
Now this was done for 1 dimensional problem. For a general n dimensional problem, we have
got multiple dynamical quantities and our equation can be written in matrix form as Xdot =

Fx as we discussed before and we can take x is the transpose of t, x, y, z etc.

Then RK4 method, we can write in terms of this matrix equations as follows. r1 is f evaluated
x,, 12 is f evaluated at x, + (%)rl , 13 is f evaluated x, + (%)IQ. And r4 is f evaluated
x, +hr3. Then we calculate x, , as weighted average of these 4 rates with each of these
rates the matrix or column vector and we multiply that with h, add it to x,,. So, that gives us

X, - S0, let us go ahead and implement this RK4 method.
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TXR] W N |
Inj441]
Clear["Global «"]
rkd[F_, X0_, tf_, nMax_] :=
Hodule[{h, datalist, prev, ratel, rate2, rate3, rate4, next},
h= (tf = Xa[1]) / nMax {1 N;
For[datah‘st = (X0},
O Length[datalist] s nMax,
AppendTo[datalist, next],
prev = Last[datalist]}
ratel = Through[F @@ prev];

h
ratels Through[Fn (prev + E ratel

E
h
rated = Through[Fn (preu + ; ratez]] }

rated = Through[F @@ (prev + h rate3)];

h
next = prev+ = (ratel + 2rate + 2rated + rated);

ElFIE 4 B

ha (tf - XO011) / nMax 1/ N3

Fcr[datalist = (X9},

Length[datalist] s n¥ax,
AppendTo[datalist, next],
prev = Last [datalist];
ratel = Through[F e@ prev];

h
rate2 = Thraugh[F.O [prev + . ratel“ :
h
rated = Through[Flo (prev + 1_’ rateﬁ“ H
rated = Through[F @@ (prev + h rate3)];

h
next = prev + E (ratel + 2 rate2 + 2rated + rated);

E
Return(datalist]; O
]

v

To do that, I am going to clear everything that in there, this clear command just take of the
fact that, older definitions are all erased. Just in case there are some older definitions that can
conflict with what we are going to do now. So, just erase all the older definitions that are
stored in mathematica context called global. This will clear that up. And we go ahead and

define RK4 method.

So, here is RK4 method. This is same as the Euler method or the Euler improve method. The
only difference here is that is going to be in the body again. So, let us just review the body

part. Here is the body of the follow which is being changed.

So, previous value is the last of the data list. Ratel is F applied on previous, rate2 is f applied



on previous plus h/2 times ratel. Rate3 is F applied previous plus h/2 times rate2. And rate4

is F applied previous plus h times rate3.

And then we take the weighted average of the rates, multiplied by h and add to previous. So,
it is as simple as that go ahead and write down this code yourself, implement it and once you

are done, you can we can test it out.

So, this is a pretty much straight forward generalization of the Euler methods. Let me go
ahead and execute that so that is loaded in the context and let us go ahead and when you are

ready, let us go ahead and so, before we actually try it out, I want to simplify a few things.

(Refer Slide Time: 26:19)
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funct_, x J=-xt
func[{t_, x }]=-xt

-tx

-tx

func[l, 2]
=2

func[{1, 2}]
-1

o We can s define 3 vecion fumction, thai i » fusctos e revarms a st of vabees. For example
func[{t_, x }] = {xt, x+t, x-t}

[tx, t+x, -t+x)

i

So, we will what we will do is, we will do an alternative implementation. We will do an
alternative implementation of the RK4 method. To do that, so let us go back to the RK4

method and [ want to show you something.
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miam | o |
h= (tf - X0[1]) / nMax // N}

Fcr[datal'ist = (X9},

Length[datalist] s nMax,

AppendTo[datalist, next],

prev = Last[datalist];

ratel = Throu| prev];

rate2 = Through[F..

h
prev + 5 ratel“;

rate3 = Thraugh[Flo

h
prev+ 1_’ ratez]];
rated = Through[F @@ (prev + h rate3)];
h
next = prev + E (ratel + 2 rate2 +» 2rated + rated);

E

Return[datalist];

]

Here, you see that I am using the Through function and F applied. I take previous and all
these other things and take their arguments and apply F on that. This is an alternate way of
writing this body which is somewhat simpler and also slightly more general because we are

working with vectors here. Previous is the vector, weight is a vector.

So, in order to actually make things slightly simpler, what we will do is, we will do an

alternative implementation.

(Refer Slide Time: 27:08)
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ks Wolframm Lanpuaps you can defing 8 funsion of many argmesss in mor than tae ways

func[t_, x ] =-xt O

func[{t_, x }] =-xt

-tx

-tx

func[l, 2]
-2

func[{1, 2}]
-2

W can s define o vston fomction, thai i  Fusction dhun reeurs a s of valoes For example
func[{t_, X }] = {xt, Xx+t, x-t}
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func[t , x J==xt

func[{L., @ X+t
Outja4s)

-tx
Outj#dg)

t+x
Inf44é]:=

func[3, 2)
Out448)

-6
In[451]:=

func[{1, 2, 3}]
Outjas1]

func[{1, 2, 3}]
& We can o defing 4 wickod fuiction, thal i & fuctos thit relerss o sl of valees. For exasple

func[{t_, x }] ={xt, x+t, x-t}

[tX, L4, -t+x)

ElFam i ]

o We can shio defing 4 wocle fasction, thal i & fusctos thad Fetersd @ sl of valees. For cnasple
ind73)=

func[{t_, x }] = {xt, x+t, x-t}
Oull4T3)

(X, t+X, -t+X)

In[475]:=

func[{2, 2})

Out[475)
(4, 4,08}
#Weein s Iy with i Thia P i iy,
» W will defing rate lunction F s follires
Ay bl s sl
wwhere f and g are some fussrion of the argumenss. This way we cun define dhe e fanciion F in one go. Code b agpears o be dlighily simpher, Here is the mplemensation

Clear ["Global +"]

rk4[F_, X@_, tf , nMax_] t=
Hodule[{h, datalist, prev, ratel, rate2, rate3, rate4, next},

b rkE VARIRN [ alaw 74 M

To do this alternative implementation, we will see the multiple ways of defining a function.
That is a same result but they are multiple ways we can define it in wolfram language and

will make use of that. So, here is an example of a definition of function of t and x.

Let us say, function of t and x is -x t. We can make the same alternate definition in the
following way. You can define function rather has to 2 arguments, t and x. we can have 1
argument to the function, that is the list. But this list can have 2 elements, t and x. And both
the functions are defined in the same way. And let me go ahead and execute this. And when
you call a function of 1, 2 with 2 arguments, 1 and 2, I will use the first definition and give

me evaluation of 2.

We can go and change it to 3 and function of 3, 2 will give me -6, -3 * 2. But if I pass this



function, the arguments 1 and 2 inside a list it is going to give me this definition. And I can
go ahead and execute this. Now, if you want to test it out that these two actually are different.

We can make this x +t.

So, when I call the function f with 2 arguments, with single argument that is a list, but the list
containing 2 elements, I will get x + t which is 1 + 2 that is 3. At the same now if I add
another third argument, this is going to give me just the same thing back because this is not

been defined in the context.

We have defined function as a single argument that is a list, which contains 2 elements, and
that is being defined as x + t. But we have never defined a function with 3 arguments. So,
there are multiple ways of defining a function and since we are working with vectors, what
we will do is, we will use this vector definition, where we will pass a single vector to the

function, and define a function in terms of its arguments or the elements of the list.

So, to do that what we can also do is, we can define a vector function, that is a function is the
arguments of the functions is a vector and also its output is a vector. So, we can for example,
this is the definition where the arguments of function is a list t, X, it is got 2 elements and then

the output is a list of 3 elements x t, x + t and x - t.

So, let us go and try this out and when we do thiswe getx *t, 1 *2=2,1+2=3and2-1=
1. We will go and change that to 2 and the result changes to 4, 4 and 0. Where now this is a
list of 3 elements, this is a vector. So, my input to a function is also a vector and my output of

the function is also a vector.

So vector goes in vector comes out so, therefore this is a definition of a vector function and
this is what we are going to use in order to define the problem that we have working on. And
this when we use this, we can avoid the Through function by putting in a vector and getting

out a vector.

So, what we will do is, we will define our derivative function in the following fashion. So,
derivative function will have an argument. If it is 2 dimensional problem will have arguments
a list of t, x and y and the output will be 1 because time derivative is constant, it is 1.
Derivative of time with respect to itself is 1 then xdot is some function f of't, X, y, z and ydot

is some function of g of t X, y, z.
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Inj47e]:=
Clear["Global «"]
rk4[F_; X8_, tf_, nMax_] :=

Hodule[(h, datalist, prev, ratel, rate2, rate3, rated4, next},
h= (tf - X8[1]) / nMax /1 N3
For[datalist = (X8}, O
Length[datalist] s aMax,
AppendTo[datalist, next],

prev = Last [datalist];
ratel = F@prev;
h
rate? = Fi[prev + 5 ratel];
h
rated = Fﬁ(prev + 5 rate2];

IlFiE 4

]
Hndu'{el{h, datalist, prev, ratel, rate2, rate3, rated, next},

h= (tf = X8[1]) / nMax {1 N;
Fur[datalist = {X8),

Length[datalist] s nMax,
AppendTo[datalist, next],
prev = Last[datalist];
ratel rev;

h
ratel= F@ [prev + ; ratel];

h
rated = F@ [prev + 5 ratel‘]‘;
rated = F@(prev + hrate3);
h
next = prev + ; (ratel + 2ratel + 2 rated + rated) ;

E

Return[datalist];
1

Bia?

So, let us go and add clear the global context again just because we are going to define the
RK4 method again. So, once I clear the global context previously defined RK4 is gone and
what we will do is we will redefine the RK4 and again this time, the changes in the body. So,

let us go ahead and look at the body.

This is the body. Now, we see, I do not need to use the Through function. I can take the f and
directly apply it as a single argument previous the list goes as a single argument F and the
output of this is going to be a list. Before I needed to use a Through function to get an

argument as a list.

Get the output as a list. But I do not need to do that now because my F is being defined. I am



assuming that my F is defined in this fashion which is something like this. A list goes in and
a list comes out. So, therefore I can simply take F and apply it on the single argument

previous again I can take F and apply on this.

And at different point and then again rate3 in the same way fashion and rate4 in the same
fashion. And I finally calculate the weighted average of rates multiplied by h and add it to
previous and that gives me the new definition of RK4. So, let me go ahead and execute it.

And this is new definition of RK4 that [ am going to use. This is how we will apply it.

(Refer Slide Time: 32:28)
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In[478)=
w =108}

|| 1
beta= ., w=-=3
4

rateFunc[(t , charge_, current_}] = {1, current, -wcharge - current});
initial = (0, 1, 8);
solx[t ] = e Cos[betat];

datad = rkd[rateFunc, initial, 16@;
Show[ListPlot[datad[ ;3 , 133 2], J0Tned - True, PlotMarkers - None,
PlotRange - Full], Plot[solx[t], {t, @, 180}, PlotRange - Full, PlotStyle = Red])

u

1
beta=./w--;
R

rateFunc[{t_, charge , current_}] = {1, current, -wcharge - current};
initial = {8, 1, 8};
solx[t ] =e*Cos[betat];

nf4gs]:=
datad = rk4[rateFunc, initial, 10, 20); O
Show[ListPlot [datad[ ;5 , 133 2], Joined + True, PlotMarkers + None,
PlotRange + Full], Plot[selx[t], {t, @, 180}, PlotRange + Full, PlotStyle + Red])
Duj484)=

« o we will blemest e Bkt Method ] RK2 fisproned s ahs s e saie way. Then we will comspare thess o coupl o peoblees

w=hr



1
beta = 1||nr:- -3
4

rateFunc[(t_, charge_, current_}] = {1, current, -wcharge - current};
initial = (0, 1, 8};
solx[f ] = e Cos[betat];
Inj431]
datad = rk4[rateFunc, initial, 1@, 1@8];
Show[ListPlot[datad[ ;3 , 1 ;3 2], Joined - True, PlotMarkers - None,
Q PlotRange - Full], Plot[solx[t], {t, 6, 1808}, PlotRange -+ Full, PlotStyle -+ Red] )
il

So, let us go ahead and we will go back to the problem we were working on the damped
oscillator. For the damped oscillator, let us take w =10, B = A fw—}‘ . The difference here is,

this time will define the rate function which is argument of t, x and v as or this is actually the

current so, the notation we are following was this was charge and this was current.

So rate function is the function of time, charge and current and timedot is 1, chargedot is
current and currentdot is minus W times charge and minus current is what we were doing. So,
now we define 3 different rate functions for 3 different quantities. We define a single rate

function for time, charge and current as a 3 tuple.

The 1* element is 1, the 2" is current and currentdot is minus w times charge minus current.
The initial condition is again a vector at t = 0, charge = 0 and current = 0. And the solution of

this equation is e 2¢>®) 5o let me go ahead and evaluate that.

We will call the variable datad4 and in that we will call the RK4, RK4 is now called with rate
function. Rate function is the set of functions which defines the rate for charge, current and
time. The initial condition which contains the initial time, the initial value of charge and
current, final time tf and number of points nMax so let us start with a small number of points.

Let us say, 10.

Let us go ahead and execute it. And you see this does not work. This is very poor. Because h
is 1, ti - tf = 10. 10/10 = 1. We are taking 2 few points. Let us increase the points to 20 and

see what is that doing and you see that has already done a significant improvement with just



20 points. Rk4 method is already giving me almost shape of the true solution.

Let me go and increase this to 40. And you see that this is pretty much the shape of the
solution. We go ahead and make it something like 70 and you see that this in pretty good
agreement at 100. This will actually be fantastic. So, let us go ahead and compare this with
other methods so the RK4 you see with only 100 points I am going to get a very reasonably

good result. So, let me go ahead and check this out for Euler Methods.

(Refer Slide Time: 35:43)
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euler[F_, Xo_, tf_, nMax_] i=Module[{h, datalist, prev},

h= (tf - X8[1]) / nHax /1 N}

For[datalist = (X8},
Length[datalist] s nMax,
AppendTo[datalist, prevash (Flpreu@
prev = Last [datalist];

15

Return[datalist];

]

rk2(F_, Xé_, tf_, nMax_] := Module|{h, datalist, prev, ratel, ratel,
h= (tf - Xa[1]) / nMax {1 N;
For[datalist = (X8},

fasasbrdasaldany o bz

e T EX N I B
Return[datalist];

]

rk2[(F_, X8_, tf_, nMax_] := Hodu'le[{h, datalist, prev, ratel, rate2, next},
h= (tf - Xa[1]) / nMax // N}
For|datalist = (X8},
Length[datalist) s nMax,
AppendTo[datalist, next],
prev = Last [datalist];
ratel = F@prev;
rate2 = F@(prev + hratel);

h
next = prev.+ ; [rate@atel];

Return[datalist];

]

So, again we will define the Euler Method in the same way as you have defined the RK4
method that is, we will get rid of the Through function and we will have a rate function which

whose output will be a vector.



It will give me rate of all the quantities. So, again the body of the Euler Method is being
changed in the following way. We are redefining the Euler Method so that we can use the
same structure for f that is the rate function and again all that we have done here is, is change
the calculation of the next point is previous plus h times f at previous. This is the Euler

Method.

So, let me go and execute it. And improved Euler or the second order Range-Kutta method
which I am going to call now as RK2, this RK2 method I am going to redefine and this time
the body changes in the following fashion. I have got rid of the Through function and f at at

operation is just f at previous plus h times ratel. This is the 2 rates.

Take the average of the rates, multiply with h and add to previous and that is my improved
Euler method. So, let me also execute this and load it into the context. So, now that I have
defined the Euler Method, RK2 method and the improved Euler method, all 4 of them does

the same style. Let me go ahead and do a comparison of all these methods.

(Refer Slide Time: 37:19)
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In[478]=

w =18}

— ¢
beta= . w=- =3
4
rateFunc[(t_, charge , current_}] = {1, current, -wcharge - current};

initial = {0, 1, 0};
solx[t ] = e/ Cos[betat);
In[481]:=
datad = rkd [rateFunc, initial, 18, 1680];
Show[ListPlot [datad[ ;5 , 133 2], Joined - True, PlotMarkers -+ None,
PlotRange -+ Full], Plot[selx[t], {t, @, 168}, PlotRange - Full, Pl
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rate2 = F@{prev + hratel);
h
next = prev + 5 (ratel + rate2);

E

Return[datalist]}

]

W =10;

1
beta = -3
'5 4

rateFunc[{t , charge , current }] = {1, current, -wcharge - current};
initial = (8, 1, 8);
solx[t ] = e "?Cos[betat];

datad = rk4[rateFunc, initial, 10, 100];
Show[ListPlot [datad[ ;5 , 1;; 2], Joined = True, PlotMarkers +
PlotRange + Full], Plot[selx[t], {t, @, 180}, PlotRange + Ful

W =10}

|| 1
beta= . w=-=3
4

rateFunc[(t_, charge_, current_}] = {1, current, -wcharge - current};
initial = (0, 1, 8};
solx(t ] = e/ Cos[betat);

Inf499]:=
datad = rk4[rateFunc, initial, 18, ;
Show[ListPlot [datad[ ;3 , 133 2], Joined - True, PlotMarkers - None,
PlotRange -+ Full], Plot[solx[t], {t, 6, 1808}, PlotRange - Full, PlotStyle - Red])




1
beta = ,,w- -3
4

rateFunc[(t_, charge_, current_}] = {1, current, -wcharge - current};
initial = {0, 1, 8};
solx[t ] = e Cos[betat];

In[505]:=

datad = rteFunc, initial, 18, 70];

Show[ListPlot[datad[ 33 , 133 2], Joined - True, PlotMarkers - None,

PlotRange - Full], Plot[solx[t], {t, 0, 180}, PlotRange + Full, PlotStyle - Red] )
Out]506):

=

So, let me go ahead and do the comparison of all these methods. So, the same problem so, I
will copy this part of the problem and I will put this at the end. Let me add this with the end
over here, so, here is my definition of the problem, again I am choosing the same set of

parameters w = 10, same rate function, same initial condition, the solution is also same.

Now rather than doing RK4, I can go ahead and try RK2 method and Euler Method. So, let
me just go ahead with Euler Method first. With Euler method, 100 points let us see what
happens? You see this is what happens with Euler Method on 100 points. We just tried this

some time ago.

Euler Method with 100 points works in very poorly. Improved Euler method or RK2 method
that we have defined with 100 points works reasonably well and RK4 method also works
reasonably well and in fact RK4 method also works with lesser number of points may be at

50. So, here is RK4 at 50. Let us go and do this comparison again.

So, RK4 at 50, 70. So, let us go and do this. So, RK4 at 70 is pretty much as good as Euler
Improved Euler Method or RK2.
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W =10}

|| 1
beta s, w=--3
4

rateFunc[{t_, charge , current_}] = {1, current, -wcharge - current};
initial = (0, 1, 6};
solx(t ] = e Cos[betat);

datad = rk2[rateFunc, initial, 18, 1
Show[ListPlot[datad[ 33 , 133 2], Joined = True, PlotMarkers - None,
PlotRange -+ Full], Plot[solx[t], {t, 0, 180}, PlotRange + Full, PlotStyle - Red])

Out]508]
il
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-43
=

- 11 EX N I = 0
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|| 1
beta= ., w=-=3
4

rateFunc[{t_, charge_, current_}] = {1, current, -wcharge - current};
initial= (0, 1, 8};
solx[t ] = e Cos[betat];

data#-@'ateFunc, initial, 18, 100];
Show[ListFlot [datad[ 33 , 133 2], Joined - True, PlotMarkers - None,

PlotRange -+ Full], Plot[solx[t], {t, 0, 180}, PlotRange + Full, PlotStyle - Red])

In[508]:=

Ou510)
il




rateFunc[(t_, charge_, current_}] = {1, current, -wcharge - current};

initial = {0, 1, 0};

solx[t ] = e Cos[betat);
In[511]:=

datad = rk4[rateFunc, initial, 18, 70];

Show[ListPlot [datad[ 33 , 1 ;3 2], Joined - True, PlotMarkers - None,

PlotRange - Full], Plot[solx[t], {t, 0, 160}, PlotRange + Full, PlotStyle - Red] )

Outl512)

So, let us go ahead and see this at for the Euler method again in order to get a good solution
in Euler Method, I require at least a 1000 points. Even with a 1000 points I am not getting a
perfect agreement but with RK2 method, I can get a reasonably good agreement at just at 100

points.

And with RK4 method, we can do at even lesser number of points. Let us say 70, you get a
pretty good agreement at 70. Let us do understand this comparison even better between these

3 methods by taking another example.
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v =0,8;
rateFunc[{t , x_, v }] = {1, v, =-x+Cos[wt]}}
initial = {8, 1, 8};

( w? Cos[t] + Cos[u t)

solx[t ] :
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tf = 100;
nMax = 500;
datal = euler [rateFunc, initial, tf, nMax];
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In[516]:=

Dl l,n,z

=4

1Cos[t]+ Cos[mt], (t, z}]

Ccs[m t] O

Oull518}=

Cos[tw] u'Cos[tu]

1-u? 1-0°

0 =8.8;
rateFunc[{t_, x_, v }] = {1, v, =x+Cos[wt]};
initial = (0, 1, 6};

(-o? Cos[t] + Cos[u t])

solx[t ] 2 ——————

s-iv

Now we will compare the various methods, Euler Method, Euler, improved Euler or RK2 and
RK4 method for the Rang-Kutta method. These various algorithms using driven oscillator,

driven oscillator is something that we have covered in a different video.

So, go ahead and watch that, but here is a quick recap of the driven oscillator. The equation
of motion of driven oscillator is given by this equation over here. Which is the first part of
this equation is simply the equation of the simple harmonic oscillator to which we have added

an external force.

So, this is an oscillator which is a simple harmonic oscillator but an external force is applied

to drive it and when we non-dimensionalize it, this equation reduces down to this equation



where all the parameters, external parameters m, k and f are gone and we are only left with

single parameter o . Here, x t and ® are dimensionless quantities.

When we reduce down this equation of motion, 2™ order equation of motion to 1% order
coupled ODEs that is x" =v and v’ = —x+ cos(wf). We can use this to implement on the
computer and or the, for the various methods that we have done. So, this is our set of first
order ODEs. The solution of this equation of motion is given by this solution over here,

which we will what we will do is quickly check.

So, here is our equation and we are claiming that this is the solution. So, in order to check
that, what we will do is, we will use mathematica built-in method for calculating the
derivatives. So, here is my claimed solution. So, this claimed solution is I am going to write

as omega square is minus omega square by 1 minus omega square.

Take this guy multiply this with cos t to this add ﬁ and then multiply that with cos (®f)
that is our claimed solution. This is what we are claiming that as a solution and in order to
verify that this is actually the solution of this differential equation, we are going to calculate

the 2™ derivative of this solution with respect to time.

In order to calculate the 2™ derivative, we will use the Mathematica’s built-in function called
D, which calculates the derivatives to calculate the single derivative with respect to time. |
will just tell that this is the function, 1*' argument of D is function, the 2" argument is
derivative with respect to the variable, so variable is t, so 1* derivative with respect to t is

given by D [f, t].

And that gives me this, but I am interested in the 2™ derivative for that, I will tell the D
function that t is the argument, but I want the second derivative by putting all both these
things in the list. If 1* argument is of this list is, 1 element of this list is t, second element is

the order of derivative, when I do that I get the 2™ derivative.
Now, if to the 2™ derivative I add x, that is move this -x to the left hand side, it becomes
dzﬁ +x = cos(wt). So, let me go ahead and add this solution to this derivative, so I take

this, add this solution to this derivative and when I execute this, I get the sum and if you look

at this sum, this sum can simplify further.
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2Cus[mt],[t,2}]+ ZCus[tl'l ;

l-w l-u -

Cosfut] //

_mz
D[— Cos[t] +
1-at

Simplify
Ouil517)
Cos[tw]

w=0.8;
rateFunc[{t , x_, v.}] = {1, v, -x+Cos[ut]};
initial = {9, 1, 8};

(-u?Cos[t] +Cos[u t]]_

solx[t ) te —m8 ———
=

tf = 100;

nMax = 500}

datal = euler [rateFunc, initial, tf, nMax];
data2 = rk2lrateFunc. initial. tf. nMax1:

| EX K ]

rateFunc[{t , x_, v.}] = {1, v, -x+Cos[wt]};
initial = (8, 1, 8};

(- Cos[t] + Cos[u t])

solx[t_ ] i= H

1-4?
in(522)
tf = 100;
nMax = 500;
datal = euler[rateFunc, initial, tf, nMax];
data2 = rk2[ratefunc, initial, tf, nMax];
datad = rk4[rateFunc, initial, tf, nMax];

Table [Show[ListPlot[data[ ;; , 1 }; 2], Joined » True, PlotMarkers - None,
PlotRange + Full@ot{sulx [t], {t, 8, tf}, PlotRange + Full, PL
ImageSize » 408], Tddta, {datal, data2, datad)}]

f e A n
Let me once again go ahead and apply postfix simplify on this mathematica in-built ability to
simplify equations. So, let me go ahead and simplify that and all we are left with cos (wf). So

dzdit2 + x = cos (wt) d square x by dt square plus x is cos of t omega. Therefore, the claimed

solution that we have given over here is actually the solution of this equation. This was just a

quick cross check of the solution.

And now, let us go ahead and add implement this. What we will do is, when omega is close
to 1, you see there is a divergence and that is called as resonance, the amplitude becomes

very large as @ approaches 1.

So, what we will do is, we will work with some value of ® close to 1, so in this example,



what we have done is, we have we have taken ® = 0.8 and then we define the rate function,
so we will take a free parameter ®» = 0.8 and take the rate function as the argument of the
rate function is the vector t, X, v and the value of this function is also the vector 1, v,

—x + cos (0f).

Where 1 is the rate of time and x" =v so that is why we have got the 2" argument is v and
v' =—x+cos (of), that is why we have got the 3™ element over here is —x + cos (w?). So,
that is our rate function for the forced oscillator or the driven oscillator and then the initial

condition here is, 0 1 0 thatis, att=0,x=1 and v=0.

So, that is we take the forced oscillator, we start out from extreme position or extended we
extend the oscillator away from the mean position and we release it under the force fcos (®f)
. The solution is as we discussed is been given over here. So, this is our initialization of the

problem. So let us go and execute that.

Then we want to tf = 100, nMax = 500 and for these 2 values, for these value of tf and nMax,
I want to find the solution using the Euler method, RK2 method, and RK4 method and again
you see we have defined the functions in the same way. So, we are using the same argument,

same structure.

So Euler functions is called with rate function, the initial condition tf and n max, RK2 is
called with again the same arguments, RK4 is called with same arguments, so we are keeping
the tf and nMax fixed. So, let us go ahead and execute this. So, tf = 100 and nMax = 500.

Now, what we are going to do is, we are going to make a list plot of all of all 3 of these.

In order to do that, I am going to use the table construct. So, this part of the table construct
makes the list plot for and compares it with the solution and to for this variable data, I am

passing 3 possible choices.

So, table runs on the variable data where data takes the value datal, data2 and data4. And
datal, data2 and data4 are calculated over here using the Euler method, RK2 and RK4
method. And when I execute this I am going to produce 3 list plot comparisons or 3 plots
where I am comparison comparing the data from each of these methods with the analytical

solution. Let me go ahead and execute that.
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ImageSize -+ 400], {data, {datal, data2, datad)}]
Cutl527]=

et
- = . — ]
T

And the output is set of 3 graphs. This is because the Euler method, Euler Method compares
very-very badly, you see Euler Method gives shows that the oscillations keeps going

indefinitely. This would have happened if ® was close to 1, but the ® is actually 0.8.

So, this is a bad result from the Euler Method. The RK2 method gives a reasonable equal
result but it does not show agreement and in all the regions. But RK4 method gives a fantastic

agreement for the same value of nMax.

Now, all this different 3 different cases were done for same value of nMax. And we see that,
for same value of nMax, RK4 gives the much better result compared to the to the RK2

method and the Euler method. Let us go ahead and check this out for slightly different values.
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solx[t ] .l I

tf = 50;

nMax = 1
datal = [rateFunc, initial, tf, nMax];

data2 = rk2[ratefunc, initial, tf, nMax];
datad = rkd[rateFunc, initial, tf, nMax];
In[527]:=
Table[Show[ListPlot[data[ ;3 , 133 2], Joined » True, PlotMarkers - None,
PlotRange - Full], Plot[solx[t], {t, 0, tf}, PlotRange - Full, PlotStyle - Red],
ImageSize -+ 480], {data, {datal, datal, data4}}]
Oul[527]

iili-l

ImageSize -+ 400], {data, {datal, data2, data4}}]

Out|533]=

Let us go ahead and make tf equal to let us say, say 50 and nMax <= 100. Let us go and do
this comparison. You see again, for tf = 50, nMax = 100, which is you can calculate h, h =
50/100 = 0.05 for h = 0.05, Euler Method is giving out poor result. Improved Euler Method is
showing some increment in the beginning but then it is deviating from the true solution.

However, RK4 method is doing the reasonably well.
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In[534]:=
tf = 50

nMax ;
datal =Buler[rateFunc, initial, tf, nMax];
data2 = rk2[rateFunc, initial, tf, nMax];
datad = rkd[rateFunc, initial, tf, nMax];
In[533]:=
Table[Show([ListPlot[data[ j; , 133 2], Joined + True, PlotMarkers + None;
PlotRange = Full], Plot[solx[t], (t, @, tf}, PlotRange + Full, PlotStyle + Red],
ImageSize - 480), {data, {datal, data2, data4}})
Dut[533)=

TXR] W W |

- - P i

PlotRange -+ Full], Plot[solx[t], {t, 8, tf}, PlotRange -+ Full, PlotStyle + Red],
ImageSize -+ 400], {data, (datal, data2, data4)}]
Out]538}=

e

And as we increase this nMax from 100 to 200, there will be improvement for both the RK2
and the RK4 methods. RK4 method is now in a perfect agreement, RK2 method has
improved but the Euler method is still not performing well. If you want Euler Method to

perform well, we need to increase the nMax further. So, let us go ahead and check that out.
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tf = 505 O

nMax = 1868;

datal = euler[ratefunc, initial, tf, nMax];
data2 = rk2[rateFunc, initial, tf, nMax];
data4 = rkd4[ratefunc, initial, tf, nMax];

In[538]:=
Table[Show[ListPlot [data[ 33 , 133 2], Joined - True, PlotMarkers - None,

PlotRange - Full], Plot[solx[t], {t, 8, tf}, PlotRange » Full, PlotStyle - Red],
ImageSize » 480], {data, (datal, data2, datad)}]

Ou539)

Out]545]=

So, what we will do is, we will make nMax 1000 and see how does that do for the Euler
method in this problem. We see now that the Euler method is starting to give some
improvement at least in the beginning, whether it again deviates away for larger values,

however improved Euler and the RK2 and RK4 do pretty well over here.
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tf = 50

nMax 93:
datal =®Buler[rateFunc, initial, tf, nMax];

data2 = rlk2 [rateFunc, initial, tf, nMax];
datad = rkd[rateFunc, initial, tf, nMax];

In545]:=
Table[Show[ListPlot[data[ 33, 13; 2], Joined + True, PlotMarkers + None,

PlotRange » Full], Plot[selx[t], {t, @, tf}, PlotRange -+ Full, PlotStyle + Red],
ImageSize - 400), {data, {datal, data2, datad)}]

Out[545]=

OutE51}=

Ofcourse, let us go and make it 10000 and for 10000, we see that Euler method starts to give
decent result but as time grows, the deviations also grow form the true solution. Let us go

ahead and extend this comparison further by doing the error analysis.
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Inf552):=
err[dataset_, func_] := Module[{tlist, xlist, Fxlist},

tlist = dataset[ ;; ; 11; («Extract each time values)
xlist = dataset[ ;; , 2]; («Extract each x values)
Fxlist = func /@ tlist;
(+Apply func to each time value to get Adst of funct;]s+)
Return[xlist - Fxlist // Abs // Mean] ; O
]
Scaling with h
Lt define the probless
w=0.2;
rateFunc[{t , x_, v.}] = {1, v, -x + Cos[wt]};
initial = {0, 1, 8};

p——

In each of the 3 cases. So, what we are going to do is, we will take this error, the mean
absolute error that we defined earlier through this error function. Will execute this error

function load it into the context.

Now, we will look at how does this error scales with h? How does the mean error scales with

h in these 3 functions?
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In[553]
w =8.2;

rateFunc[{t , x , v .}] = {1, v, =x+Cos[wt]}}
initial = (8, 1, 8);

(-o? Cos[t] + Cos[u t])

solx[t ] i= X

1-4?
# Mo, we caleulate the crvoes for cuch o the alpurithms asd check its scaling with i
» Euiler Method

tf = 203
Table|dataset = euler [ratefunc, initial, tf, @;
tf

ha —;

10.8"

1
;err[dataset[ 132133 2], solx], {n, 1, 4)]

(9.66266, 0.296082, 0,146228, 0.1376)

« bpraved B Rasmge Kts Tod amer

(T EEL I 5
-w" Los[T] + Los([w t]
solx[t ] 1z —————;
1-4°
S, wy calloulaig the orvoey for cach of the alporithmu sad check ita waling with &
# Faler Moshod
In[557]
Table|dataset = euler|rateFunc, initial, tf, m“];
tf |
10.0"

1
Eerr[dntaset[ 134135 21, solx), (n, 1, 4]]

Qulj558)=
(9.66266, 0.296082, 0146228, 6.1376)

' sperved EslerRuge Kiutia 2nd ooder

tf = 20}

tf
Table[dataset = rkZ[ratﬁFunc, initial, tf, 1e"] jhe W;

ierr[datasetﬁ 330 13320, solx], {n, 1, 4}]
So, this is our definition of the problem. So, for Euler Method, we will take tf =20, we will
calculate the table where the data set is obtained by using the Euler method, and nMax is

changed, extend by n, where n is 1 to 4.

In so, what do we do, we calculate dataset, we calculate the h value and both these outputs
are suppressed by and then we output 1/h times the error after comparing it with the solution.
So, when we execute this, you see that the error / h becomes a constant. That is what we have

expected for the Euler function.

The global error becomes a constant with h as h becomes smaller or nMax becomes larger. It

converges to some number close to 0.14. So, h becomes a constant error over h becomes a



constant that means the error scales like h, or the global errors scales like h in the Euler

method.
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;err[dataset[ 135 13321, solx], {n, 1, 4)

Out[558]
{9.66266, 6,296082, 0,146228, 0,1376)

» begrned EskerBlissge Kulls Tod codes
Infs58]:=
tfs= 29;

tf
Table|dataset = rkz[rateFunc, initial, tf, 1@“] ths T;

ﬂ“
1
E err(dataset[ ;; , 1} 2], selx], {n, 1, 4}]

Out[560)=
[2.58767, 9.9438946.5442324, 0.0442784)

P
tf = 20;
Tahle[dataset:rkd[rateFunc, initial, tf, 10'];
tf
T

T EXN Y CH |

;err[ ataset[;; , 1;; 2], selx], {n, 1, 4}

Out[580)
[2,58767, 0,0438949, 0,0442324, 0,0442784}

« Risnge Kt dth et

Inf561]=
tf = 20;
Table|dataset = rk4[rat!Func, initial, tf, 18"];
L
= ﬁ,
:—‘err[dataset& 330 13520, solx], {n, 1, 4}]
Outj562)=

[0.06@8918248, B.06216844, 6.80219111, 6.08362541}

Comparison for fixed i
» Commpuioen of metheds with each orber fot & foued valee of b
tf =20
nMax = 1660;

Let us do the same thing for improved Euler method which is done this code over here and I
will execute this. And this is the result we will get in this case again what we have done here,
we have taken the error and divide by A”. So, error/ 4> in this case becomes a constant close

to 0.04.

This constant is going to change depending on the method and the problem being used, but it
will always be some constant. So, RK2 method, global error goes to A*. This is the

validation of that. And for RK4 method, we will take the error and divide by 4*. When we



execute that, we see that this number converges to some number close to 0.002 or 0.003, so in

RK4 method we find the error does scale like 4* which is what we expected.

Let us do the comparison for fixed h that is, in this cases we were changing nMax and
therefore we are changing x and we are looking h and we are looking at how does errors scale

with h.
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In[563]
tf = 20;
nMax = 1000;
tf-0.0

nMax
datal = euler [rateFunc, initial, tf, nMax];
data2 = rk2[ratefunc, initial, tf, nMax];
datad = rkd4[rateFunc, initial, tf, nMax];
(err(datall }; , 13; 2], solx], errpdatal( ;; , 1}; 2], solx],
err[datad[ ;; , 1;; 2], solx]} C)
Cu|565)=
0.02

Oul[569]=

[0.00292457, 0.006017693, 3.50577x10™")

Timing Analysis

wLat's e myg, o b ao shat the covons for rach of the methedh in approvimanely compurable:

tf = 20

Now, we are going to do is, we are going to fix the value of h and see for what value of n
max, we are going to get results in each of the cases. So, we will take nMax = 1000, tf =20

and h = tf/nMax.

So, and then we calculate datal, data2 and data4 using the Euler RK2 and RK4 methods.
When we do that, we see that the h value is 0.02 and the errors for this fixed value of h that is
step size is fixed. The error in the Euler method is 0.0029, 0.003 or 10~ is of the order of
107 . For RK2 method, this error becomes of the order of 10~ and RK4 methods drops

down to the order of 1071°

Again this is of the order of h. This is of the order of 4#* and this is of the order of 4*, h was
0.02 in this case is was 10 2 order. This is slightly less than 102 order. So, this order h, this
is order 4> and this is orders*. We can also do the timing analysis. See which of these

methods is fast, how fast each of these methods are.
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Outl568)=
[0.00292457, 0.000017693, 3.50577x 10"

Timing Analysis
o Lt b a6 h 0 8t T crvos o o the et n ity compueable:

In(580]=

tf = 20; ()
datal = euler [rateFunc, initial, tf, 80000);

data2 = rk2(rateFunc, initial, tf, 2000];

datad = rk4[rateFunc, initial, tf, 100];

{err[datal[ ;; , 1;; 2], solx], err[data2[ ;;, 1;; 2], solx],
err[datad[ ;5 , 133 2], solx]}

Oul[579]=
[0.000068458,, 4.42581x 167", 3.46951x10°°)

L'y compare Time taken by each alporithim lof solviag the prablem
euler [ratefunc, initial, 20, 3000€]; // Timing
(2.23345, Null}

Outjs63)
[6.60292457, 0,600017693, 3.56577 10"

Timing Analysis
@ Lt'w ne myy,y o b o shat e oyrons dor vach of the matheds in approsimasely comparablc
Inf580}:=
tf=20;
datal = euler [rateFunc, initial, tf, 80000];
data2 = rk2[rateFunc, initial, tf, 2000];
datad = rkd[rateFunc, initial, tf, 108];
{err[datal[ ;; , 13; 2], solx], err[data2[ ;; , 1} 2], solx],
err[datadf ;; , 133 2], solx])
Oui[584)
[0.8006343006, 4.42581x10°°, 3.46951x10°°)

Lat's compure Thme taken by cach alponthm for wolving the problem

euler[rateFunc, initial, 20, 30000]; // Timing
{2.23345, Null}
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= )
datal = euler [rateFunc, initial, tf, 80000];
data2 = rk2[rateFunc, initial, tf, 2000];
datad = rk4[rateFunc, initial, tf, 100];
(err[datal[ ;; , 1;; 2], solx], err[data2[;;, 1;; 2], solx],
err[datadf ;; , 1;; 2], solx]}
Ou584)=
[0.6000342006, 4.42581x10°°, 3.46951x10°°)
et compar Ttk by each o o sobing o oo
Inj58s]
euler[ratefunc, initial, 29,639]; /4 Timing
Out{585)=

[46.0487, Null)

rk2[ratefunc, initial, 20, 2000]; // Timing
(6.634432, Null)

rkd[rateFunc, initial, 20, 100]; // Timing

IlFAE 4 ]

{err[datalf j; ; 133 2], solx], err[data2[;;, 1;; 2], solx],
err{datadf ;; , 1;; 2], solx]}
Oull5éd)=
[0.000342006, 4.42581x10°°, 3.46951x10°°)
« L compa T ki by sch st o sing o bl
In{545]:
euler[ratefunc, initial, 20, 86000]; // Timing
Oulf545]=

[46.0407, Null}

Ir(586]
rk2[rateFunc, initial, 20, 2000]; // Timing
Outf58=
(0.831795, Null)

In(587)
rkd [rateFune, initial, 28, 160]; // Timing
[6.603185, Null)

R s e okd skanddand for sobving O when you wasi o achieve boih good sccuracy and bigh efficiescy
el

So, for that we will use the timing function. Built-in timing function in Mathematica. So, first
what we will do is, we will tune the value of nMax for each of these cases so that we get
approximately the same error. So, this is what we have what I have done here is, I played

around with these values of nMax so, that I get the same error in all the 3 cases.

So, this will require you to play around a little bit with this nMax. When you do that, you see
for, when I take nMax = 30000 for the Euler function, I get an error of 107 and for RK2 I
get an error of 10°®. For 2000 points and for RK4 I get an error of 10 to minus 6 for 100

points. So, what I have done is, | have tuned all these 3 methods to get an error of same order.

Error in the Euler method is slightly higher. In order to improve this further I may have to go

to slightly more points but that does not really guarantee an improvement. But we can try this



out. Let me try it for 40000 points and this is still running. There we go okay the some
improvement but not the error still of the order of 107 . We need to probably in order to

actually get to the order of 107, we may have to increase it further.

If we are lucky that might happen. So, let me go ahead and make it 80000 and this is going to
take some time to run. You can see that, it is still running. Let us wait for this and see if there
are some improvement and this is actually running because the first step has 80000 points

that is what it is taking time.

If have to run the for loop for 80000 points. And for the Euler Method it is going to be pretty
fast or improved Euler or RK2 is going to be pretty fast because it is 2000 and RK4 is going

to be extremely fast.

So, there we go. We are done with this. So, still you see this is not much of an improvement.
We could not really go down to 107 but this is 3 times 3 x 10> . We will stick with that,
but you see is 80000 points. So, let us go ahead and compare the timings. So, here let me go
ahead and compare timings for 80000 and still running. So we have gone wait for this to
finish and approximately my belief is this is going to be something around 10 seconds. Looks

like, it is going more than 10 seconds.

Alright, it looks like it is even more than 20 seconds. There we go. So, it is 46 seconds. It
took about 46 seconds to take to do 80000 steps using Euler Method to get an accuracy of
3x107°. Let us do this for RK2 method, where I get an accuracy of 4 x 10°° with 2000

points.

So, let us execute that and you see it only take about 0.03 seconds. And for RK4 with 100
points which gives me the same accuracy. This only takes about 0.003 seconds on this
computer. So, RK4 method is about 10 times faster than RK2 to get the same accuracy. And
RK2 is about a 1000 times faster than the Euler method.

So, we see that those significant improvement when it comes to times, when we are using the
RK4 method and that is why we often just stick to the RK4 method when we are solving
ordinary differential equations. In fact, RK4 method is considered as a gold standard in order

for solving ODE:s to achieve both the high accuracy and high efficiency.

High accuracy means that I can get accuracy of order 4*, global error of the order A* and



high efficiency means I can do this in less number of steps, that is, my code is going to do

less amount of computation and I am going to get high accuracy.

So, RK4 method is considered as a gold standard and this is the method we are going to use
in studying all the other problems related to ordinary differential equations that we are going
to come across in this course. You can go ahead and play around with some others examples
of the differential equation and we will see you next time with more examples with

implementation of RK4 method.



