
 

Physics through Computational Thinking 
Professor Dr. Auditya Sharma 

Dr. Ambar Jain 
Department of Physics 

Indian Institute of Science Education and Research, Bhopal 
Lecture 28 

Mean Global Error in Euler's method and Application of Euler's method 

 

(Refer Slide Time: 00:26) 

 

Welcome back, last time we learned how to implement Euler’s method on the computer using               

Wolfram language on Mathematica and we learned how to solve problems using Euler’s             

method, how to solve ordinary differential equations in one dimension using Euler’s method.             

Today we are going to learn, how the error propagates in Euler’s method that is how the step                  

size matters in the precision of the calculation.  

And we will also see how to solve multi-dimensional problems that is 2-dimensional             

problems or 3-dimensional problems using Euler’s method and this will be our steps to build               

on to more rigorous, more complicated methods such as Runge Kutta second order, Runge              

Kutta fourth-order. So, let us go ahead and get started.  
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Just a quick review of Euler’s method. We have a differential equation and some             

initial conditions and this is how we implemented we used a for loop. We have              

used module construct to construct a single function, which has a bunch of inputs, one of the                 

arguments or inputs of the function Euler, that we defined was function initial value of x, the                 

initial value of time.  

Final value of time up to which we want to evolve or we want to solve the differential                  

equation and a number of steps which is in nMax. In the first we calculate, .               

Then, we start over for loop and in each step, we calculate the next step for x, this is                   

initialization step, we define the first element of data list which is the solution that we are                 

looking for, so our solution is stored in the data list.  

The condition is the length of the database should be less than nMax. We decided to, in the                  

increment part, append data list with the previous plus the increment and this increment is               

both the increment in time and increment in x, f acting on the previous value is giving me the                   

derivative which multiplied with h, gives me delta x.  

So, h is the increment in time, h * f(x) in t is an increment in x and together is added to the                       

previous which is the two tuples. And, in the body we are just simply reading or updating the                  

previous reading the last element of the data list. So, in that process for loop generates the                 



 

entire solution and at the end of the for loop, we return data list that ends the function. So, I                    

will go ahead and execute it and that is my Euler function.  

Since, Euler function, we are evaluating with size h that is we are solving a differential                

equation. and in that process, in the Euler’s method we are calculating          

or So, this is accurate up to h, which means that x and f, is accurate               

or this is accurate to order because this is already order h.  

So, is correct up to the order . So, this is correct up to order h and the correction is                  

order . So, I know with an accuracy of its square. Therefore, a local error is of the                

order of . But that means the correction in corresponding to , oh sorry I am             

missing over here. I should have a summaiton over i.e, .  

The determination in comparison to is accurate to order . The correction itself          

is of order h and the error in it is going to be at most order . Now, so at each step we are                       

making a correction of order but we have to do of the order of steps. So, by the time                 

we reach the end of the solution, the number of steps involved is on the order of nmax.  

So, therefore , * h is nothing but (tf - ti) which is an order one               

number and this is h . So, therefore global error becomes order h. And, this is exactly what                  

we are going to analyse now using numeric.  

So, let us go back to our court, in order to find out the global error, what we are going to do is                       

we are going to calculate the error using this formula, where we are going to take xi, which is                   

the xi that we completed and f(t i), where f(ti) is the analytical solution at time ti, So ti is the                     

expected analytical solution and xi is something that we have completed. 

We take the difference of the two, take the absolute value and some over all i’s, from i equal                   

to 1 to n and then we divide by n to calculate the mean absolute error or mean absolute                   

deviation.  
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In order to do that, we will again use the module construct and we wrote down the error                  

function, this is something we did last time, it is the quick review of that. We wrote down the                   

error function, this is the error function.  

In the error function, we again use a module construct tlist, xlist and Fxlist where tlist, we                 

extracted the first element of the data set, data set is the argument that we are passing. This                  

data set is the solution that we obtained through the Euler method that is this data list that the                   

other method returned. We are passing that to the error function, this error function, the first                

element is the time component and the second element is the x component.  

This stands for all the rows, so we extract with the time component, we extracted with the x                  

component, then we calculated a list of true values of f by applying the function, that is this                  

function which is the big F, the solution of the differential equation. We applied f at tlist to                  

obtain the true values, then in order to find the mean absolute error we took the difference of                  

xlist and tlist to apply the absolute function on it through the post-fixed application.  

And, then calculate the mean again through post-fixed application and then return that to give               

me the mean absolute error.  
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So, let us say the function that we are trying , the function for which the solution that we are                    

looking for is, let us go ahead and do what we have been doing so far. Let us start out with                    

  

So, let us say our differential equation that is , so this is little f(x,t) which is what I                  

have defined over here as . This ff is the function that I am going to pass to the error                   

function, this is the solution of the differential equation and in this case, if in the               

solution is .  



 

So let us go ahead and do that first and so this is my derivative , this is the solution, x is a                      

function of t and here is the table that I have constructed. The two elements of this table, this                   

is tf  - ti and I am talking tf as 5 and ti as 0.  

So, tf - ti is 5, which is , to the error function I am passing 2 arguments, the                  

Euler and the solution f, this is the Euler list, Euler function is going to return me data list,                   

which is the solution for equal to this f. From x(ti) = 0, ti = 5. For x0 = 1 and .                     

So, this is going to, you know the first argument is going to return me data list.  

That, the data list is passed to error function and then error function is also passed the                 

solution, hence going to find the difference in the mean absolute error. I am dividing that                

mean absolute error that I am obtaining from the numerator over here by h. Let me, for now I                   

am going ahead and remove that.  
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So we will just take the error, mean absolute error and we are going to execute it for n equal                    

to 1 to 4. So, you are going to get 4 values, n equal to 1 to 4. So, n will be 10 that means                        

is 10 and when n is 4, is 10000. So, for 10 steps, 100 steps, 1000 steps and                 

10000 steps we are going to execute this, so this is going to give me, oh I think I forgot to                     

define error function as we go ahead and define that.  

Okay, now I will do it again and this is going to give me the value of h. So, each of these                      

pairs is giving me a value of h that I am using over here and the corresponding error and as                    



 

we see that as h decreases proportionately error also decreases, the mean absolute error also               

decreases. So, this is the global error that we are looking at.  
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And if I divide this global error by the value of h, which is this we copy that and paste it over                      

here and when I execute that you see, you are going to get approximately a constant. So, for                  

h = 0.5 we are giving mean absolute error by h as 0.1 or 0.05 also, mean absolute error by h                     

as 0.1 and so on even for h equal to 0.0005, I am getting the same thing.  
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You can go ahead and change for example I can change tf to 10 if I change tf to 10. This is tf                       

- ti, so this also I should change to 10 and this also I should change to 10. And I can execute                      

this again you will see that the first one, the h was too large, h was 1 because 10 over 10 is 1.                       

So, that is something that is an outlier, so we leave this one out but apart from that, for small                    

values of h when h is 0.1, 0.01 or 0.001 we see that mean absolute error divided by h is a                     

constant. This is a numerical check of the fact that we laid out.  

That, global error in Euler method scale-like order h and that is what we are seeing over here.                  

We will go ahead and try out something else.  
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Let us go ahead and try out . The solution of that is Gaussian, so solution , you                

can go ahead and check that out and we are going to go ahead and execute this again and we                    

see that again that pretty much for all values of h that we have taken over here, mean absolute                   

error divided by h is a constant.  

Therefore, the error is of the order of h or the global error scales like h. Or else you are                    

welcome to go ahead and play with this little but more for various different functions that you                 

can try out for various different s, that you can solve and find the analytical solution, feed                

that n, run this a few times to find out how in your examples that you take, how does the                    

mean absolute error scale.  
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Alright, let us go ahead and work on how to reduce higher-order ODEs to a set of first-order                  

ODEs because what we have learned in the RS method is that if you give me a first-order                  

ODE, I can use Euler’s method to solve that first order ODE. However, most of the time in                  

physics we do not come across the first order of ODEs, we come across second order                

ordinary differential equations.  

And, if you want to use Euler’s method to solve the second-order of ODEs, then we need to                  

reduce those second order ODEs, the first order ODEs. So that we can apply Euler’s method.                



 

In order to understand that let us go back and go to the familiar example of an LCR circuit                   

and obtain a second order ODE. 

If you go back and review the LCR circuit example, this is the differential equation we                

obtained. For this differential equation, the initial conditions were         

Q(0) = Q0 = 0. Now, in order to apply Euler’s method, this is the second-order differential                 

equation, we are going to reduce it to the first-order differential equation by defining              

auxiliary quantity, in this case, we will call it which is also physical for I is the                

current.  

, so we will use and will replace with . So, therefore now we have            

got two equations, and . So, this set of two equations is equivalent           

to this second-order equation. Now, the interesting thing is that this set of the equation, these                

two equations they are both first-order in derivatives.  

This equation is first order in time, it has only , this equation again is first order in                 

time because it has got , I itself is but we are not considering I as we              

are talking I as a independent variable, Q as an independent variable and we have got two                 

coupled ordinary differential equations of the first order and the initial conditions also modify              

accordingly.  

Q(0) becomes Q0, I(0) becomes 0, rather than writing , so we say I(t=0)=0. So,             

we modify both the initial conditions and the set of differential equations reducing them              

down to the first-order ODEs. Now, I can go ahead and use Euler’s method because I know                 

that now in order to solve this equation with Euler’s method, I can calculate dQ in steps by                  

finding out I * dt.  

Previous I * dt, I want to find I, all I have to do is use this equation which says is this                     

right-hand side, so I calculate this right-hand side at previous time and multiply by dt and that                 

will give me dI. So, I can calculate subsequently dQ steps and dI steps and keep on                 



 

incrementing them and by doing so I can implement the Euler’s method to find out both I as a                   

function time and Q as a function of time.  

Now, that you have got a gist of it, you can go ahead and generalize it and here is how the                     

generalization works.  
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Let us consider a general nth order ODE, for example, nth order ODE is a function               

of f and is given by f which is a function of time x, , and so on, means that n - 1 is                     

derivative of x with respect to time. So, in general my nth derivative can be written as a                  

function of all the lower derivatives and the time.  

Therefore, most generally I am to deal with such a differential equation and I am talking                

about ordinary differential equations and such a equation I can reduce to a set of ODEs by                 

using the following trick for every quantity such as . Starting with , I will define as y               

and then I can take as which is y.  

So, becomes z and then so on I can write as equal to w, or rather w is , should be                  

other way around, where w is the n - 1 derivative of s and then, my which is the                 

nth derivative of x becomes a function of t x y z as w, etc. which is where I take t x y z after                         

w, all of them as independent variables and I simultaneously, evolve them using this set of                

differential equations where this is the equation of motion, that was given to you.  

And, these are the auxiliary equations that you wrote down in order to convert this equation                

into a set of the first-order ODE. Now, notice that all of these equations are first-order                

differential equations. So, now if we can go ahead and implement Euler’s method on that.  
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So, let us go ahead and prepare this LCR circuit for numerical evaluation, there is one more                 

step that we need to do before we can actually apply Euler’s method. So, remember the 4                 

steps of our computational thinking approach, define, translate, compute and interpret. What            

we are going to do now is we will work on the first two steps, define and translate.  

Then, compute and interpret something we will do on the computer using Euler’s method and               

define and translate, we need to do on pen and paper. In order to translate our LCR circuit                  

problem on to the computer.  



 

So, remember define and translate we have to break into pieces and translate, we have to                

make the equations ready for evaluation on the computer or turn them from physics to a                

problem of mathematics which we can set up on the computer. So, we are going to do this, so                   

this is the set of equations we have, first we are going to do is non-dimensionalize this                 

equation by choosing suitable scales for Q, I and t.  

We already know how to reduce them to the first-order ODEs. But, first, we are going to do                  

is non-dimensionalize them, without non-dimensionalization we cannot turn them into a           

problem on computers, because computers only know numbers they do not understand            

physical dimensions. Then, we are going to check how many free parameters are left in the                

equation after equation after non-dimensionalization that is how many free quantities are            

there on whichever solution can depend.  

Then, we are going to write the non-dimensionalize set of equations as the first set of ODEs.                 

We just did this set of equations is first order ODEs. Now, once we have non-dimensionalize                

we will take the non-dimensionalize equations and write them as the first set of ODEs               

because those are the ones we are going to put on the computer. And, finally, you know the                  

analytical solution, this is the analytical solution.  

We are going to take this analytical solution and also known non-dimensionalize this one              

because that is what we are going to go and compare on the computer. So, let us go ahead and                    

get started with that, so non-dimensionalization, the always the easiest way of doing that is               

find out the scales in the problem for various physical quantities, in this case, physical               

quantities are Q, I and t.  

So, for Q the natural scale present is , for t there two choices of scales either I can take                  

as a unit of time or I can take as a unit of time. So, I will make a choice here, any                     

of these choices are fine, you can go ahead and try the other choice. For the sake of this                   

example, I will take as the choice and now I need a scale, for current, I will take current                  

is .  

I have already chosen scale for and scale for t, so therefore a natural choice for scale for                 

current becomes . So, let me go ahead and substitute this in this set of equations and                



 

when I do that rather than introducing new variables which are dimensionless, it is always               

easy to make the following replacement. Replace Q by , where this Q was dimension              

for Q and after replacement, this Q becomes dimensionless Q and Q naught contains all the                

dimensions.  

The same thing for the time, the time here is dimensionless time, contains the             

dimensions of time, this I is dimensionless I and contains the dimensions of current.             

So, this Q, t and I are before the replacement that is in this equation, they are dimension full                   

quantities. Q, t and I on the right-hand side of the arrows are dimensionless Q, t and I. So, I                    

am going to go substitute Q, t and I with the right-hand side values in this equation.  

When I do that I get this over here, I have pulled out dimensions of Q and t and as a                     

consequence I am getting this factor out here, again in my differential equation I had got               

. So for Q I am writing and that pulls me at the dimension of out. Again,               

pulling out dimensions in dimensions of Q ot of this and dimensions of dt out of this.  

I get a factor of , is a constant. LC is a constant, will leave them as it is and                  

now if you simply find you will get this equation where most of the dimension full quantities                 

will cancel out and I am only going to get one rati0 . This Q is dimensionless, this t                  

is dimensionless, so is dimensionless. This is dimensionless because both Q         

and t are dimensionless.  

This Q is dimensionless, therefore is also dimensionless and this is a dimensionless            

ratio. This is the only parameter in my problem that is left after the translation, so we are                  

done, define and translate, these two steps. After translate, this is my maths problem, it is not                 

complete ready for implementation for Euler’s method. But, as far as the maths problem is               

concerned I must solve this math problem for a single parameter .  

So, every time changes, the solution changes, math solution changes. Taking that           

math solution to a physics solution after that only means I am setting the scale for physical                 

quantities such as Q, t and I, which is determined by, etc. But, as far as the problem                 



 

is concerned, the solution only depends on the ratio or the nature of the solution will               

depends on the ratio . 
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Very good, now we are going to play the same thing, we are going to reduce this equation to                   

our first-order ODE, a set of the first-order ODE. So will define , the dimensionless              

charge divide by the rate of dimensional charge with , the derivative of dimensionless             

charge is with respect to time. As dimensionless current and as , where this           

was replaced by . 

And the initial conditions , again Q is dimensionless, so and .         

So, now this is the math problem that is ready for me to be put on a computer. This is set of                      

the first order of ODEs without any dimensions and the only parameter is .  
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Now, if I look at the solution, the solution, the analytical solution that was given to me for                  

this, which we worked out a couple of lectures ago. I again non-dimensionalize this when I                

non-dimensionalize this my solution reduces down to this equation, where this is            

dimensionless charge, this is simply an and a cosine function of this argument.  

Where, I have got the constant . It is constant multiplying dimensionless time            

and this constant, inside this square root is also dimensionless. Now, my solution depends on               



 

the ratio . As I saw it in the differential equation, the differential equation only              

dependent on the ratio   

So does the solution already dependent on that and I can see that this solution is only valid as                   

long as . So, that is our domain of validity of the solution and this is the domain                 

which will work and we will take this parameter as something. We can call it and              

as long as we are going to have this solution as a valid solution. Alright, let us go                 

ahead and work on how to implement it on the computer.  
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So, before we solve that problem, let us understand the general framework of putting this on a                 

computer. So, now in general I have got a set of coupled ODEs and in general those set of                   

coupled ODEs can look like this.  

Let us take work in 3 dimensions, is some function of f, t, x, y and z, is some function g                   

t, x y, and z, is some function of t, x, y, and z. We can express these equations better in the                     

form of matrix equations by doing the following, we can define big X as a column vector of t,                   

x, y and z and big F as the set of functions f, g and h and I have also appended or prepended                       

this with 1.  



 

So, f is 1, f, g and h now you see that my differential equation that is this set of equations                     

over here, this set of coupled first-order ODEs simply can be written as a single matrix                

equation and this kind of setting up, work out really easily on a system like Mathematica                

which can directly work with matrices and lot of operations on matrices can easily be done.                

That is why we are setting this up in the form of a matrix equation.  

You see that the first equation in the , is a matrix equation, that is sort of 4                

equations because x has 4 dimensions t, x, y, and z. The first equation is kind of a trivial one                    

which is , so the first equation is saying that time derivative of time with respect to                

time is simply 1.  

So, that is the trivial equation and , and is the set of these three equations.             

Now, the initial condition also can be written in terms of x0, that is at , I have got                 

, and . So, becomes my initial condition with , set of 4           

quantities at time .  

So, we are simply going to write as x initial which is the initial value of time x, y and z,                    

the combination of all four of them. And, Euler’s method simply becomes evaluating            

.  

So, this is a matrix equation again, s a four tuple, is a four tuple, is a scalar               

number, the step size and is a four tuple because is a function which is a column               

vector of four functions where the first one is the identity function, so is going to give                

me a vector or a four tuple, column vector of four items.  

So, this is how I can go ahead and implement that, now you can see that the Euler’s method                   

code is pretty much going to be same, I am going to make minor modifications. The only                 

minor modifications I have to make is to take care of doing this for all the functions at the                   

same time, that is do it for the matrix as a single number. So, let us go ahead and see how to                      

do that, for that I am going to use Through function. 
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What Through function does is a notice from this example, when I take some function f, g,                 

and h and apply it on x, that is without the Through function, lets do it is without the Through                    

function and if I do this, you are simply going to get that back, but when I apply Through                   

function on this, as I enclose this whole thing Through function. You see I get an array of f                   

applied on x, g apparent, x and h apparent and that is exactly what I want.  

I can also implement this through an operator or prefix application. So, f, g, h is set of                 

functions that I am applying on x. When I do use a Through, I get f, g and h applied to all                      

three of them and in return, I get a list of three functions and if my set of arguments were a                     



 

vector, as they happened to be in this case I can apply on a set of vector x, y or for that matter                       

t, x, y and z which is my column vector.  

I can take it and apply on that, in return I am going to get an array of functions ,                  

 and .  
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So, we can go ahead and use this through the construct, there are two ways of doing this,                  

either I can use the operator or alternately, I can also use the operator in the                

following sense. If I use the single the operator, I am going to get ,             

 and z and so on. 

I can use either of these constructs and it depends on how you define your functions f, so let                   

us work with the example and you can modify the Euler general function that I am                 

going to give you for this example. So, let us go ahead and work, redefine the Euler function,                  

for the more general case of multiple dimensions. So, this case 3 dimensions x, y, and z add                  

the time dimensions to it, it becomes 4 dimensions.  

Because Euler general is going to be for 3 plus 1 dimension, one is a time dimension and                  

everything else depends on time, so 3 other dimensions. Again, for this Euler general              



 

function I have got arguments, the set of functions f, g, h etc. The initial point , this is                 

going to contain also the initial point time . So, this contains ,  , and . 

All the 4 items in it and the final time up to which I want to evolve and , is the                  

number of steps that I want to keep. So, you this, some modification over here is been                

absorbed into , as part of the initial condition ​. This is a set of functions, not a single                 

function and I will show you, how we are going to implement that. Again, I have got a bunch                   

of local variables in the module construct.  

In order to make things little bit more readable, I have defined previous, next and rate. So, let                  

us go ahead and understand this code. The first thing I am going to do is, I am going to                    

calculate h, h is , is a first element of , that has been resolved over here, this is                 

the first element of . So, , then I want to start my For loop and this is                

the part of my for loop.  

In the for loop, again I have got the initialization, the condition, the increment and the body.                 

So, the last 3 statements over here constitute the body and in the increment I am appending to                  

the data list, the next element. The next element is calculated in the body, so let us go ahead                   

and understand that how we are doing this, so first in the initialization is the set of 4                   

items ,  , and .  

We are adding all of that into column vector, and that has been added to data list,                   

this is initialisation of data list, ofcourse the condition is same as before, length of data list is                  

less than and increment, first we are going to execute the body and in the body, we are                   

going to calculate the next and in the increment of the for loop we are going to append that                   

next value to data list.  

In order to calculate next, I need to first read previous, previous is read from the data list. So,                   

I take previous, there is last element of data list. In the first run of the for loop, that will be                     

simply because data list only contains one element . Then, I calculate the rate, the                



 

rate is given by application of the function on the previous. So, each function that means,                

should be of the form, it should have 4 arguments.  

Each function should be of the form it can take 4 arguments t, x, y and z or whatever the                    

number of variables we have. The way this code is written it does not care about how many                  

variables you have got, as long as the size of and the function is same, this will be fine.                    

Because size of previous is same as the size of and function requires the number of                 

argument that the function require should be the size of  or the size of previous.  

Once you, so this is going to pass each of the functions, the arguments through is going down                  

make sure that each of the functions in my array are passed on the arguments in the previous                  

and the rate is calculated. So, that means I calculate from here or from here and next                   

is calculated by adding previous * h + h * the rate or h * .  

So, this is instantaneous , at the previous point multiplied by h that gives me the step size.                  

Adding that to previous gives me, the value of the next step, I execute this for loop, when the                   

for loop ends I return the data list. Let us go ahead and run this function. Now that this                   

definition has been made, let us go ahead and implement this for the problem that we are                 

looking forth.  
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The problem we were looking forth is this set of equations for LCR circuit, the damped LCR                 

circuit, damping is because of the resistor and oscillation is because of LC. So, my equation                

is , , and . It is better to actually write this             

equation as, so this is my , this is the function of only I and this side, is a function                    

of Q and I, these are the only two variables.  

So, you can think of Q as x and I as y, so this and this is and we have got                       

and . So, therefore in order to implement this what I am really doing is I am                  

writing my X = Q, Q as a two tuple of Q and I and ofcourse I have to include time also.  

So, I can go ahead and include that, so t, Q and I is my x and I am writing as, again this is                         

one, this is simply I because and is this, so this is my differential equation, written                  

in the matrix form. This is my differential equation in the matrix form I want to solve this                  

differential equation and in order to do that I am going to take this ratio  as w.  

So this is what I have defined as w and just for reference I have also defined because                   

, this the part that goes into the analytical solution. So, I am going to take w as                  

10 which is much bigger than 1 by 4 so to start with. This is , is the oscillation                    

frequency in my analytical solutions of , will give me the time period.  



 

Now, I want to define these 3 functions, this is my first function, this is my and this is my                     

, the third argument over here is . So, in order to define that I am going to call the first                     

one as identity, this one as identity, so this is defined over here. This is identity and this is                   

simply one, but it has to have three arguments because my code wants each of these functions                 

to have three arguments.  

So, this one is a trivial one, you have to define and identity always in order to run the code, it                     

should have three arguments time, charge and current and independent of those arguments             

always going to return 1, because is always 1. Then, charge dot is , it is again an                   

argument of t charge and current but it is only a function of current, so therefore is only                   

equal to current and then finally current dot which is the principal part of the differential                

equation. 

Again, it is a function of t, charge and current in general but in this scale there is                   

which is . So, therefore is the third equation in this matrix equation and finally                

the initial conditions are to set, the initial conditions are at . I have got and                 

.  

So, this is my set of initial conditions, when I execute that, I suppress all the outputs using the                   

semicolon over here. So, when I suppress the only output that I am printing over here is this.                  

So, when I take w = 10, and is 2.01. So, this is my time period in the                    

dimensionless units of time.  
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Now, I am going to go ahead and evaluate this, notice that for the Euler general function I am                   

going to pass the first argument. First argument was supposed to be a set of functions. Set of                  

functions which are defining x dot and those set of functions are id, charge dot and current                 

dot. So, this is the set of three functions, id is 1, this is q dot and this is i dot.  

Initial condition again, the size of initial condition is 3 and size of the function has to be also                   

3, if these two are not equally in some sort of error. Then, final time and number of                   

steps, I am going to take as, let us say 100 to start out small. Let us go ahead and actually, go                      



 

ahead and execute this hundred I can print on screen and read so that may remove the                 

semicolon.  

I am going to execute this and there we go, this gives me the expected result. I see an array of                     

set of 3 points, this is my initial condition, this was the initial value and then some changes                  

happened to the initial value and then, some more changes and some more evaluation and so                

on. We get evaluation up to , so this is the value of final charge and this is the value                    

of final current. Second value is always the charge and third one is the current. So, let us go                   

ahead and plot this. 
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In order to plot this here is my comparison, what I have done over here is that I am doing a                     

list plot of the data that I have just calculated and in the data I am taking all the rows, but only                      

the first and the second column that is I am taking the first column is time, the second column                   

is current sorry charge. 

So, I can go ahead and actually, in order to make it more readable I can do this as table form,                     

so that you can see. So, the first column is time, second column is charge and the third                  

column is current and I want to take all the rows, this is for all the rows. But, only the first                     

and the second column, so that gives me Q as a function of time or Q versus time data, and I                     

make a list plot of that. So, that gives me, this part gives me the list plot of that.  



 

And, so let me put the plot markers back so that I can see and then I am comparing this with                     

the analytical solution which is in the red. Analytical solution , the non-dimensional             

version of the analytical solution , , w was a dimensionless ratio of L,              

R and C.  

So, this is he analytical solution, I want to compare the analytical solution with the solution                

that I have got and see that this comparison is really bad.  I think I have put a table form here.  
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So let me remove this table form because I want to take data as a list. Let me put a semicolon                     

back again, now that you understand, so let me put tangled semicolon here. Now, I am going                 

to do this comparison and there we go, so this is my analytical solution and it does not really                   

work very well. It does not give me any comparison, any good comparison with the analytical                

solution. So, let me go ahead and see this if this is because of h being large.  

Let me make it number steps as thousand, so h becomes small and compare that, that is a                  

significant improvement. In order to see that we try it as 100 less, try 500 and it is in between.                    

So 100 was really poor, in order to just verify that, this was 100, 100 was extremely poor, that                   

means errors were large. 500 is getting better and 1000 is even better, this is thousand and                 

finally 10000.  

If I go ahead and do the 10000, you will see it is a fantastic agreement actually, not that great                    

but we can actually go ahead and increase it to 20000 and you see from 10000 to 20000 is a                    

slight amount of improvement. If you notice that, but not a significant amount of              

improvement, red and black colours are not exactly on top of each other, but very close to                 

each other, it is quite decent. So, you can go ahead and play with values of beta. 
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So in order to place value of beta what we need to do is, or . I can go ahead and                     

make w even smaller, if I make w smaller the oscillation frequency becomes larger. Time               

period becomes 2.88, we can actually compare the time period also before the time period               

was 2 and that is about right frim peak to peak the time period was 2.  

And now it should be close to 3. So, let us go ahead and check that, there we go, it is our                      

comparison. We changed the value of beta so the curves changed or we changed the value of                 



 

w so the curves changed and our time period from this peak to this peak is about 2.88 which                   

is slightly less than 3 which we can see from the plot over here.  

It is a good idea to actually check some of the basics while we are doing the computation so                   

that we know that computer is doing what we intended to do, we have not made some sort of                   

mistake.  
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When w is 20, is 20. So, therefore this is going to, the R is going to be very-very                    

small and as a consequence resistance small that means I should have lots of oscillations and                

you see the time period reduced down to 1.41.  

Let us go ahead and do this for 10000 points which should be enough, the execution is done,                  

so let us go ahead and compare and we see the comparison is very well. Let us try to                   

re-obtain the limit when the resistance is very small.  
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Let us make this even larger, let us make w equal to 100 that is the case when resistance                   

becomes small and we can go ahead and evaluate this and do a comparison. Now, you see as                  

I make w larger and larger, the damping becomes much-much more slower and there are               

more oscillations that are happening.  

That means by the time, amplitude decays to one third, we are going to cover more                

oscillations. We can go ahead and check that back.  
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When w was 10, for we can see that amplitude was 1 over here by the time it                   

dropped down to one third which is about here.  We have covered just about one oscillation. 
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And as I increase w, make it larger, let us say make it 100 and there we go. By the time the                      

amplitude drops to one third that is about here. We have covered about 3 or 4 oscillations.                 

So, that means we are going more and more closer, the damping becomes less and less                

important and we are going more and more closer to the regime, where we are going to see                  

the oscillations and not much of damping.  

You see that at this turning points the agreement is not very well and it is because of the                   

limitation of the Euler method. We can try to improve it by making this, increasing the h and                  

let us see if that gives me any significant improvement. It does gives me little bit                



 

improvement but see to get that much of improvement which was about, you know faction of                

maybe just about for 4 percent, for 5 percent improvement in this region over here.  

I had to double the number of points, the computational cost is very high with the Euler                 

method. At least that is what we noticed from this exercise, that the computational cost               

working with the Euler method is very high because local accuracies order and global               

accuracies order h, so I have to keep on, in order to improve the global accuracy of my                  

solution I have to linearly scale down h that is, I have to, in order to improve the accuracy                   

from point 1 to 0.01 that is by an order of magnitude, I have to take 10 times more points.  

So, in order to improve accuracy by 1 order magnitude I have to take points 10 times more                  

which is a huge computational cost. This is something we can improve by using better               

methods such as improved Euler’s method or the second order Runge Kutta or even better               

fourth order Runge Kutta which is an accuracy of, local accuracy of and global accuracy                

of .  

Before we do that, let us go ahead and quickly check. We did plot of current versus time, let                   

us go ahead and do a plot of current versus, time versus current. This was time versus charge.  
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So in order to time versus current you need to extract the first element and third element of                  

the data. So, this is all the rows of the data but the first and the third element, first being the                     

time and third being the current.  

So, if I do this and compare this with the current, you can work out the current equation for                   

the current, I is a function of t from the analytical solution. You will find that this is the                   

solution and you can do this comparison and you will see this is also a fair agreement. 


