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Introduction to Euler's Method for Solving Differential Equation

Welcome back to Physics through Computational Thinking. In this video we are going to learn
about Euler's method of solving ordinary differential equations. So, let us go ahead and get
started. Remember when we were discussing about harmonic oscillators and simple harmonic
oscillator, and then damped harmonic oscillator, anharmonic oscillator, we ran into equations

which we could not solve analytically.

In such a case you will have to resort to a computational technique to solve for a differential
equation such as Euler's method. So, Euler's method is one of the simplest methods of solving
differential equations, or ordinary differential equations, and we are going to learn about the

numerical method called Euler's method in this video.
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So let us go ahead and get started. Euler's method aims to solve a differential equation of the sort

@ = fl@,)  So, let us consider this simple example. J (%:%) where J{#:%) can be any

function. To give you a simple example Z\t) can be simply some function of x and ¢, in this

case, only a function of x, let us say minus — 2x.

In order to solve this equation, the first thing that I want to do is I want to write this as dx/dt and
then I want to write this as equal to —2x and then usually what I do is, when I am solving this
analytically, I will bring everything of x on one side and ¢ on another side and go on but when I

want to do numerically, what I want to do is I want to start from some initial position.

Let us say I have got a time axis on the x axis and [ have got x(¢) on this axis and to start with at
t =1y, T know my initial value is over here, that is x(# = 0) is given to me as some value 0,
which in this case is over here, this is 0. Now, I want to find out what happens to x at time d¢
later. So, in order to find that out, all I need to do is write dx as —2x dt and I can go ahead and

on this graph, I can find my next point by calculating what is — 2x df.

That means in time d, in time A ¢, that is if this is time d¢; I want to find out how much is dx,

and dx 1s —2x dt. So, if | calculate that dx, that is going to be some height, let us say this much.



So, at time dt later, that is a t0+ dr, my new point would have shifted over here. Then, I will
repeat that process and let me call this point as ?1, at f1 this is my value of x, which is 1 and

then I am going to go ahead and point 2.

At point f2 which is again, some d¢ distance away, I want to find out how much x has changed
so I will go ahead and calculate dx again at point t1 and for that, I will use so dry = @ diy;
dt does not change dt is always same. So, when I calculate this quantity, I get d T3, let us say

this is my dzy and if T know d T2, T can find out this and keep on doing that.

And that process, what will end up happening is I generate a solution for my differential
equation, some curve which is represented by this white line. So, what I am doing is: I am
solving a differential equation, step by step for small time df at a time and as a consequence, I
am generating the entire solution. This is the essence of the Euler's method. Let us understand

this method.

(Refer Slide Time: 4:48)

3,
Euler’s Method
+ o1Its mot possite tosolve all problems invalvi nalytically, So we will inital value through Euler’ ane of the fist and simplest methods of
this variety.
oLet's say your differental equation i given by
i=fn 1))
 Differentally, you can wrtethis equation as (which i the inspretion of te Euler's method)
dx=f(,ndt )
W are nterested in finding the soluon ofths equation between fimes f;and £
+ nordertosolve it umericlly we illdiscrtizethe ime ino  grid ¥ ntrvals and '+ 1 ime instarts. ;= ) being il time and = 1 beingthe fial time.
O 0110ty 5]
oStep size his defined x5,
hdt=n-tyy = (1p-4] /N )

« According o Euler's method

kbl
Xasl =3 +h Gy tn)

o This successivly determines al the 1



N vmXey valy

Let us understand the systematics of this method. So, in order to implement Euler's method or
what we do is we write first dx as f(x, ) df. Where f(x) is a derivative dx/dt. Now, what we do

ty

is we take the time slice, suppose we want to solve a differential equation from time 0 to “f or

some ti to 'f . Let me go ahead and do that.

Let me take my time slice, this is ti, which are also called as o and let us say this is ’L.f, which

are also called as fn, where N is the number of time intervals in which I want to do the
calculation. So, what I am going to do is I am going to cut this graph into very thin time slices,

all of equal size like that. Each of this time slices will have some width.

This width I am going to call as /, that is that is A=t~ - 0 or \tf — & J/ N . So, the total
number of intervals I have over here is N intervals and total number of time instants I have is

N+1, o being Oth time and since, this being the Nth time instance, total N+1 time instances

between that I have got N intervals and I can also write this as by — , final time minus initial

time divided by the number of intervals.

So, & is my step size, I can also call % as step size. Once I got step size, I can go ahead and once

I have calculated my 4 like this, I can go ahead and write 0 = i and after that any “n+1 is



simply calculated as flan, tn) * h ; h is nothing but dt or the step size and I will evaluate the

function at its previous value at the previous point. So, this determines my new xn and similarly,

my new tn or tn+1 = fn + h.

Alright, so this is the essence of the Euler's method. This is how the Euler's method is
implemented. So, now we will go ahead and implement. I am sorry, this is the increment, so let
me correct this, this is the increment in. So, “n+1 is Tn plus the increment in x, which is the
change in x, this is the Ax at that instant. So, I am adding to ¥« , the change at that instant there

is a Ax, and that will generate me a solution.

So, my solution will start from some initial value over here, next instant it will jump over here
and so on, depending on the derivatives, f is the derivative, as you would have noticed that this
f is derivative, so f is telling me the slope at this point. So, what I am doing really here is, at
any given point, [ am finding out what is the slope of the function, once I know the slope of the
function I move dt distance along that slope and that gives me the Ax, this is the dt along the

slope, and that gives me the height.

So, that determines my new point, and so on and when I join all these points through that
generates me a smooth curve, so this is the idea behind the Euler's method. Let us go ahead and

learn how to implement it on a computer.
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In order to implement this on a computer, what we will do is we will use the For loop.
Remember the structure of the For loop. For loop had 4 arguments inside the square brackets.
The first argument was initialization, second was condition. Third was increment and 4th was
body. We will use the For loop to do this iterative procedure of implementing the Euler's

method. Note that we discussed that For loop is less efficient compared to a table command.

And we use For Loop when decision for this instance, or this iteration is based on what happened
in the last iteration or, you know, we need the information of the last iteration to determine the
value of this iteration. That is when we use the for loop, while table is something that applies on
an array and something that we will try to apply on an array in one go. That is where we will try

to use the table command.

So, over here, we need to know where the initial x was? Where the last ¥n was? In order to
determine the next “n+1, therefore, we are going to use the For loop. Let us go ahead and learn

how to implement this Euler's method using the For loop.
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Implementation of Euler’s Method

Let s solve the following differential equation uing the Euler’s method:
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flt, x]=-2x;
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For this purpose, let us go ahead and take this example @ = —2x, and the initial condition is
x(t=0) = 1. First, let us go ahead and solve this equation analytically. So, the equation that I
want to solve is & = —2&, solving analytically I get dx = —2xdt and I can write this as
dx/2x, or rather dx/x - 2 dt. Integrating both sides, I get log x = —2¢ and I can write this as plus

a constant and I can write this as x = e times the constant log.

When I take the exponential e becomes a constant, which I am going to call A, and this is my

solution, there is my solution for the equation. I need to determine what is A. To determine A, |



am going to use initial condition. Initial condition given to me is x(z = 0) = 1. So, that implies

that A xe?""=1.

e’ = 1, therefore, A = 1. Therefore, my solution is simply x = e ?. Good now that we have found
the analytical solution, we will use this result to compare with our numerical solution. So, let us

go ahead and implement this numerically using the For loop.
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-2x

Initialization/Define

In2g)= Xi = 13
tf = 10;
nMax = 20;
tf - ti
h - .

’
nMax

structure of the solution: datalist = {{fy, xo}, {11, x1}, {f2, 22} ..}

datalist = {};
Xprev = xij}
tprev = ti;

datalist = Append[datalist, {tprev, xprevj}]

Inf34)= datalist = {}}
Xprev = xi;

tprev = ti;

datalist = Append [datalist, (tprev, xprev}]
Out(a7=

({0, 1}}

For[n=1, (+initializations)

n < nMax, (xconditions)

N+, (+incrementx)

xnext = xprev + h f[tprev, xprev]; (+body#)
tnext Qprev +h;

datalist = Append[datalist, {tnext, xnext}];
Xprev = xnext;

tprev = tnext;
]

Out[38]=
scnsots




So, here is my function. So, I will define a function as a function f, with 2 arguments, one
argument being ¢ the other being x and in order to define a function, I will use underscore so that
so Mathematica understands or Wolfram language understand that ¢ is a variable, not a particular
value, x is a variable not a particular value and I say f(#,x) = —2 x. In this case, let me remove

the semicolon and execute it.

So, f(t,x) is defined as — 2x, I can go ahead and call, I can go ahead and give some value of ¢
and x and find out whether this is working properly or not. It is clearly independent of ¢ and you
can verify that. So, that is my f(¢,x). Now, I am going to go ahead and define x initial, I will call

that as . So, i = 1 for me. Similarly, ti = 0. As start, let us assume that we are going to

solve the equation from ¢=0.

tr =10

So, to some final time, let us say /=/0. So my final time

(tp —t;)/nMaz

. Now, A is going to be

. Let us let us do that. Let us go ahead and also define nMax. nM az is the
number of steps that we want to use. Let us say, we have to start with this start with 20 steps.
With 20 steps, let me go ahead and call nMax over here. Let me go ahead and execute this

statement, notice that [ have defined all of these things in a single cell.

This is my initialization of the problem. This initialization of the problem, I am going to define a
single cell, I do not have to write separate lines. Just this makes the code more compact, and it is
easier to work with and read. So, let me go ahead and execute this to find out what is my 4 for
nMaz has been defined, so the capital M, so I can do that. There we go. So, this gives me

h =1/2. Alright, Mathematica is a symbolic language.

So, it will give you a %2 result 0.5. We will see what is the impact of that in a moment? So, let
me also go ahead and suppress it with a semicolon. So, this is my, you know, initialization or
definition of the problem. So, let me go ahead and just mark it up, this is initialization, slash
define. Alright, let us go ahead now and define our For loop. But before I write for loop, I should

decide how I want my solution to look like what do I want my solution for.



So, what I really want is my solution to be of the form it should be list of lists. So, I should have
the structure or the solution of the form (0:%0), So, I want my solution to be in the form,

\to.@a) (f1,@1) (12.%2)  and so on. This is how T want my solution to look like. So, if I

want, if [ want my solution to look like, I am going to call this as datalist, ok, this is my solution.

So, this I am going to call this datalist. So, I want to, all I know is I that I know tn and I know

20 and I know 'f and I know the differential equation @ = —2x, | want to generate a set of
points at each interval. So, distance between to and 1 is A, distance between 1 and 2 is 4 and

so on. So, I want to generate this set of points \fns ) at each interval. In order to do that, I

should go ahead and define my empty array data list.

So, let me go ahead and define this as empty array, ok. Now, I want datalist, [ want to take this

datalist and I want to prepend into this datalist. Sorry, append to this datalist or add to this
datalist the first value, that is the first value “prev and Eprev , for that I need to define what is
Tprev and Pprev, So, ‘prev Fprev is simply i and Eprev i simply %i. So, this is my previous

step, which is which is what I already know and to this I want to add tprev and Tprev,

So, let us go ahead and execute that and see. So, there we go, we get my the first element of
datalist as (0,1). So, we can go ahead and check that out. So, the first element of datalist is (0,1)
and that is all that is there. Now, I want to go ahead and calculate the next step, and next step and
I want to do that using a For loop. So, let me go ahead and this point, start writing my For loop.

So, I want my For loop to be 4 things, and I will enter each of the things in a different line.

So, first line is initialization. So, I will say let me use the counter n, so will start from » =0 and
I will say that is my initialization and all the arguments should be comma separated. So, then I
want n <= nMax which is the number of steps [ want to do, rather I should start from » =1. So,

n <= nMax and I want to increment », to increment n I will simply use n++.

And now here I want to write the body of the For loop. So, this is the initialization part of the For

loop. Notice the combination star and round bracket is used for commenting in Mathematica. So,



anything typed inside a pair of star and round bracket will be ignored. This is condition the For
loop is going to work as long as this condition holds. This is incrementing step and then finally,

the body appears over here. So, what we want to do in the body is we want to take, we want to

find Tnext and Tnext .

So, tnext = tprev + h , that is straightforward and “next = Fprev T he -f.“[m“" ‘E:Pﬂ"'j. Once
I have that, so this is the body starts, I will mark this up as body, the body is from here to the
end. So, this is my “Prev ¢, Tnext and next now the what I want to do is I want to push this

Tpextand Inext inside the datalists, I will say datalist equal to append, append is going to add the

next point into the datalist and over here I will say f‘P“"', fnext and Tnext that is my append

statement.

This is going to add 1 more line, 1 more set of points to datalist and now I want to update prev

and 'prev once this is done, “prev will become “next, and tprev should become next, so that
we are preparing ourselves for the next round. Very well so you see that my body contains
multiple statements and those statements are separated by semicolon. The arguments or the For
loop there are 4 arguments of the for loop initialization, condition, increment and the body, those

4 arguments are separated by comma.

I pressed enter after each comma so that all these lines are separated from each other so that you
can read more easily otherwise, pressing the enter is not required, I can go ahead and combine all
of this in one line, it will be perfectly fine. Well it will just become a nightmare for you to read

and understand. So, therefore I am putting each 1 of these statements in a new line.

So, as a single argument of the For loop can contain multiple statements, those statements are
separated by a semicolon and arguments for the for loop are separated by a comma and this is a
structure which is common across Mathematica, this is not particular to the For loop. This is
pretty much true for any function. Arguments are separated by commas and within a single

argument you can have multiple statements separated by semicolons.



The last argument which is not, which does not contain the semicolon usually is passed on as the
value for that argument. In this case, all of these statements are separated by a semicolon. So, the
evaluation of this entire block is going to be null. But that does not matter to us because what we
are interested in calculating is the datalist. Okay so looks like we are ready. So, let us just

quickly review what we, what we have done and cross check if we have not missed anything.

So, to start from here, we initialize datalist as empty, we identified, we started out initializing

Tprev and Tprev as @ and i the initial points to start with, then we append it to the datalist, the

f‘[m“f and ‘Fprev values. Once we have done that, we came down to the For loop, we decided to

run For loop for from n =1 to nMax, because we have got nMax steps.

So, every time we are going to increment z by 1, and in each step, when we do that, we are going

+ h

to calculate  fmext = fprev increment time by 1 step and calculate

Znext = Pprev + 1% f(tprev: Tprev) and that gives me the Ax value which is this. Adding it to
prev gives me Tnext, I want to insert next and Inext into the datalist. So, I am using the

append, to append Tnext, and Tnext into datalist.

(Refer Slide Time: 25:25)
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{{o, 1}}

For[n=1, (#initializations)

n < nMax, (xconditions)

N+, (#increments+)

xnext = xprev + h f[tprev, xprev]; (+bodys#)
tnext = tprev + h;

datalist = Append[datalist, {tnext, xnext}];
Xprev = xnext;

tprev = tnext;

|

Outj38]=

{{6, 1}}

O

Inj40)= Append [{{0, 1}, {1, 2}, 3, 4), {5, 3, 4}]
Out{40]=
({0, 1}, {1, 2}, 3, 4, (5, 3, 4}}
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If we have not discussed append earlier, this is what append do, let me quickly show it to you. If
I start with a list 1, 2, 3, 4 and I ask it to append 5 to this, the output will be a list in which 5 is
added to the end. In the case that we are talking, we have got pairs of values like this. So, we
have got a list of list. The inner list contains 2 values. Let us say something like this and to that

we want to add append something else.

It does not really matter as Mathematica is can does not necessarily need same kinds of values in
a list, it can take arbitrary expressions inside a list. That means all the elements of the list should
not have the same properties. For example, in this case, this is my, this is my outer list from here

to there, it has got 5 elements, first one is a pair. The second one is a pair.

Sorry, 4 elements first one was a pair, second one was a pair and these are single numbers to this
are appending 5, 3, 4, 5, 3, 4 is a three tuple, this three tuple, this three tuple will be appended as
an independent element to the list such as over here. So, now this list has 5 elements. This is the
first element, the second element, this is a third element, this is the 4th element, and this is the

fifth element.

Now, this was an arbitrary example to just demonstrate to you what does append do. For our
purposes, all elements are of the same variety, there are 2 tuples. The first element of the 2 tuple
is time. The second element of the tuple is the x variable and we are appending them in pairs,

such as over here. So, my datalist will be a list of 2 tuples.
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Inf#1)= For [n = 1, (#initializations)
n < nMax, (+conditions)
N+, (+incrementx)
xnext = xprev + h f[tprev, xprev]; (+bodys)
tnext = tprev + h;
datalist = Append[datalist, {tnext, xnext}];
Xprev = xnext;
tprev = tnext;
]
Inj42):= datalist
Outj42)=
1 3 5
fo,1, (50 1,01, (5,0}, 2,01, (5, 0), 3, 0,
7 9 : 11 13
{i: ]J {41 O}J {51 G}J {51 @}r {7: }r {6J @}J {ITJ @}O

(,0n {20, 18,01, {3, 0, 19, 01, {2, 0}, 120, 0]

Sotels

Let us go ahead and execute this. So, I am going to execute it. Now I want to see what is the
outcome of this? So, let me go ahead and print the datalist and there we go, we have got pairs of
points. The nice thing about Mathematica here, Wolfram language here is that it is going to

calculate them as symbolic expressions or fractions rather than necessarily numbers.

But there is a disadvantage of that usually such a process becomes slower. We will see that in a
moment. We will compare that in a moment. But this is my datalist and you see at some point,
since the solution, as we saw was exponentially decaying function, at some point, actually right
over here it became 0 and then it always remains 0, ok. That is quite accidental; actually we can

go ahead and try something else.
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5444517870735 015415413993 718908 291 383296 }
13552527 156 068 805425093 160010 874271392 822265625’

H

21778071482940061661655974875633 165533 184
67762635780344027 125465800054 371356964 111328125
87112285931760246 646623899502 532662 132 736
338813178901 720 135 A27 329 AAA 271 R5A 784 RI( KRR A4RA

2R BIQ |8 NG o8 B8 w5

oA els

Now we can go ahead and make maybe n equal to 100 and then initialize this again, and then run
the For loop again, and then print the datalist again and there you go. You see a long list of
numbers over here, ok. This becomes very difficult to read and that is what I was saying and then
also actually takes us to take a lot of computation time. So, there are 100 numbers over here.
These distractions are small numbers, but they are much more difficult to read. So, what we will

do is we will make sure that this is done numerically.

So, to make that simply, what we will do is we will simply put a /N over here. So, that itself is
evaluated numerically rather than as a exact expression. So, # = 0.1. The moment / becomes 0.1
every time a decimal number enters in the calculation over here and as a consequence, all these

numbers will get evaluated, numerical values which will become much-much more readable.



(Refer Slide Time: 29:23)

Injse):= datalist = {};
Xprev = xi;

tprev = ti;
datalist = Append[datalist, {tprev, xprev}]
out71)= @

({6, 1}}

Infs2)= For [n = 1, (#initializations)
n < nMax, (xconditions)
N+, (+increments)
xnext = xprev + h f[tprev, xprev]; (xbodys)
tnext = tprev + h;
datalist = Append[datalist, (tnext, xnext}];
Xprev = xnext;
tprev = tnext;

]

Inf53]:= datalist

Sdedols

Out(73]=
& {t0, 13, (6.1, 0.8}, (6.2, 0.64}, (0.3, 0.512), {0.4, 0.4096}, (0.5, 0.32768},

(0.6, 0,262144}, {0.7, 0.209715}, {0.8, 0.167772}, (0.9, 0.134218},

(1., 0.107374}, (1.1, 0.0858993}, {1.2, 0.0687195}, (1.3, 0.0549756}

{1.4, 0,0439805}, {1.5, 0.0351844}, (1.6, 0,0281475}, {1.7, 0.022518}

(1.8, 0.0180144}, (1.9, 0.0144115}, (2., 0.0115292}, (2.1, 0.00922337},

{2.2, 0,0073787}, (2.3, 0.00590296}, (2.4, 0.00472237}, {2.5, 0.00377789},

(2.6, 0,00302231}, (2.7, 0.00241785}, (2.8, 0.00193428}, (2.9, 0.00154743},

(3., 0.00123794}, (3.1, 8.000990352}, (3.2, 0,000792282} , {3.3, 0.000633825},
(3.4, 0,00850706), (3.5, 0.000405648}, (3.6, 0.000324519], (3.7, 0.000259615} ,
(3.8, 0,000207692}, {3.9, 0.000166153}, {4., 0.000132923], {4.1, 0.000106338} ,
(4.2, 0.0000850706} , {4.3, 0.0000680565) , (4.4, 0.0000544452) ,
(4.5, 0,0000435561
(4.8, 0.0000223007
{
(
{

{4.6, 0.0000348449}, (4.7, 0.0000278759},

b
1, (4.9, 0.0000178406}, {5/30.0000142725},

5.1, 0.000011418}, {5.2, 9.13439x10°°}, {5.3, 7.30751x10°},

5
5.4, 5.84661x10°}, {5.5, 4.67681x10°°}, {5.5, 3.74144x10°°
5.7, 2.99316x10°°}, {5.8, 2.39452x10°°}, {5.9, 1.91562

Sdetels

So, let us go ahead and do that. So, let us go ahead and execute this statement again. Initialize
this part again, if you do not remember the data list has not been set to empty now means attempt
to initialize and running the for loop will simply add more and more values to the previous data
list. So, that is the reason why I need to run this set of statements again, that is why I am pressing

shift plus enter over here.



Now at the for loop, when I run it again, I am going to get this datalist and now you can see it is
much more readable. At £=0, I have x =1 which is my initial condition, at #=0.1 ,x1s 0.8, ¢
= 0.2. it is 0.64 and so on and so forth dropping down and very quickly at about 3 or 4, it
becomes a very small number dies out, this is what you expected. For this equation, remember
this equation was it = —2x, the solution we found was x = e, So, it is exponentially decaying

solution.

For exponentially decaying solution, we expect x to become smaller and smaller, converging to 0
and that is exactly what is happening over here. That is what you expected. So, let us go ahead
and plot this plot this and find out if this is exactly the solution that [ wanted is exponentially
decaying as I wanted or it is something that is decaying, but not exactly the solution that I

wanted, ok? So, what we will want to do is we are going to do a list plot.

(Refer Slide Time: 30:41)

In74)= datalist // ListPlot
Qut[74}=

'..'& 0

2 g g g i

nrs)= Plot e, {t, ti, tf}]

Oul{75}=

007] \
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Nty (x1ncrements)

xnext = xprev + h f[tprev, xprev]; (xbodys)
tnext = tprev + h;

datalist = Append[datalist, {tnext, xnext}];
Xprev = xnext;

tprev = tnext;

]

inf74= datalist // ListPlot
Outf74]=

0.03] S
o
Plot[e™", {t}]
o B

e g

—
ti=0;
tf = 10;
nMax = 200;
tf-ti
nMax

h=

/IN

Out(83}=
0.05

structure of the solution:  datalist = {{fo, xo}, {1, x1}, {2, %2} ...}

Infse]:= datalist = {}; @
Xprev = xi;
tprev = ti;
datalist = Append[datalist, {tprev, xprev}]

outl=
{0, 1}}

Inf72):= For [n = 1, (#initializations)

n < nMax, (+conditions)

senets
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s s i o

nooj= solnplot = Plot[e", {t, ti, tf}]

Out(90}=

g

2 0 5 O 0

Inf91):= Show[solnplot, dataplot]
outg1)=

oA els

w B30

gt g

Inf92):= Xi = 13
ti= 0;
tf = 10;
nMax = 500
tf - t'iO

h= /1N
nMax

Out|96)=
0.02

structure of the solution: ~ datalist = {{ty, xo}, {t;, X1}, {2, X2} ...}

Injs4)= datalist = {}}

Xprev = xi;

tprev = ti}

datalist = Append[datalist, {tprev, xprev}]
outig7l=

{{6, 1}}

st ofs
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Mt i g

solnplot = Plot]e -, {t, t1,
Out[103)=

w |

0.05]

003

002}

4 8 0

In[104]:=

Show[solnplot, dataplot]
Out|104]=

Lets

niax = 16 600;
tf - ti

h=

/IN
nMax

Out[109)=
0.001

structure of the solution: ~ datalist = {{t, xo}, {11, X1}, (2, X2} ...}

Ino7]:= datalist = {};

o)

datalist = Append [datalist, {tprev, xprev}]
Out100}=
({0, 1}}
In[101]:=
For[n=1, (+initializations)
n < nMax, (+conditions)

N4+, (+increments)

sigonets




Tor BEz3I@ 4 o B2
e e ipont s

................
solnplot = Plot|e ", {T, 11,

Outi116]=

\

2 4 g O

In[17):=
Show[solnplot, dataplot]
out117}=

L5

We will enclose this inside a list plot, you can also do a postfix so for example, we could do
that, that does look like a you know, a decaying function, but is it the solution that we are

looking for, so we have to compare this with our solution. So, let us go ahead and plot our

solution. Our solution was e~ and we want it from ¢ = 0 to f , which was, tf was 10.

So, it means put tf over here. This is 'f , i to tf Thatis my solution. Let me go and put them
on top of each other so that you can compare and do that, I will use the show command. I will
say. For that I will define them as something. So, I will call this as you know data plot. This is
my data plot. I will give them here is my solution plot, I will put, solution plot and data plot on

this, show them together. You see, they are quite close, but not right on top of each other.

That is quite interesting. So, we got really close to the solution that we expected. So, this is my
the dots are like computed value and this is the solid curve is my analytical value, and they are
very close to each other, but they do not quite overlap. The reason for that has to do with the fact
that the step sizes are probably too large; % is 0.1, which is probably too large for this thing, I

want to make x smaller so maybe I want to make it 200 but I make it 200, # becomes 0.05.

So, let us go ahead and rerun it. Rerun the for loop again. Make the data plot again, ok, it

becomes more denser, make the solution plot and show them together and that got a little bit



better, they came closer. So, which means that I need to make my h further smaller to get an even
better agreement. So, let me go ahead and do that. So, let me make it 500. So, that makes / 0.02
and then we will go ahead and do this, execute this for loop, make the data plot, make the

solution plot and show them on top of each other now they are in almost perfect agreement.

So, now you see that step size is extremely important. If your step size is too large, you might get
roughly the shape of the solution but not you will learn exactly the solution. So, you need to
choose your /4 appropriately. The same time so you can say you know I can go ahead and make 4
very-very small by choosing large number of steps. So, for example, I can go ahead and make it
10,000 but I do tend to do make it 10,000 because very small and I can go ahead and you know,

do this and produce a really dense plot and I will get a perfect solution, ok.

(Refer Slide Time: 34:25)
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In[125]:=
Show[solnplot, dataplot]
out[125)=
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ti=0;
tf = 10
nMax = 500}

tf - ti
h= /IN

nMax O
Oul[130}=

0.02

structure of the solution: ~datalist = {{t, xo}, {11, X1}, {2, %2} ...}

In[110]:=
datalist = {};
Xprev = xij;
tprev = ti;
datalist = Append[datalist, {tprev, xprev}]
Outf113j=
{{0, 1}}
In[114]:=
waws  FOFIN=1. (winitializations)
A o B0
solnplot = Plot[e™", (t, ti, tf}]
Out137=
007 ‘
0.05]
0.03)
002 o
4 10
In[138]:=
Show[solnplot, dataplot]
out138}=

Over here you see almost a perfect solution in order to see the perfectness of that solution. I will
join the points here. I want to actually remove the points, so I should do pointSize as, that’s a
wrong option I think. I need to see what is the correct option? I think it is plot marker, plot
markers as none should do that. There we go. So, that is my, let me maybe make the plotStyle as
blue. Now I will go ahead and put this on top of that and you see they are right on top of each

other.



In fact, they are right on top of each other and for a very small 4, in this case, we see we have
produced a perfect solution. But the cost of that is, our datalist is very long. If this is a more
complicated function to evaluate, the time it is going to take is much, much larger. So, therefore,
it is not very-very beneficial to actually have such a small value of / or such a large number of
step sizes. To find a balance between the accuracy that we want and the number of steps to do

the calculation that is required.

For simple problems like this, it does not really matter, you can choose nMax to be very large
and / to be very small. But in order to optimize, we may probably want to, you know, decide to
stick to some number between 500 or 1000, I thought 500 was pretty decent. So, let us go back to
500 and do this again. There we go. So, 500 we see it is quite decent, the black and blue curves

are sitting almost on top of each other and the computational time involved is also very-very less.

(Refer Slide Time: 37:31)

Out147)=
{{0, 1}}
In[14}:=
For[n=1, (sinitializations)
n < nMax, (+conditions)
N4+, (+increments)
xnext = xprev + h f[tprev, xprev]; (+bodyx)
tnext = tprev + h;
datalist = Append[datalist, {tnext, xnext}];
Xprev = xnext;
tprev = tnext;
] // Timing

Out[148}= I O
{0.001905, Null}

In[136]:=
dataplot = ListPlot[datalist, Joined -+ True, PlotMarkers - N

281
Sidedolf
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ti=0;
tf = 10
niax = yoy00;

tf-ti
h=

nMax
out153)=
0.001

structure of the solution: datalist = {{to, xo}, {t, x1}, {t2, %2} ...}
In[144]:=

datalist = {};

Xprev = xi;

tprev = ti;

datalist = Append[datalist, {tprev, xprev}]
Out[147)=

{0, 1}}

In[148]:=
Forfn=1. (+initializations)

Sdotels

tprev = ti;
datalist = Append [datalist, {tprev, xprev}]
Out[157)=
(0, 11}
In[156]:=
For[n=1, (+initialization)
n < nMax, (+conditions)
N+, (xincrements)
xnext = xprev + h f[tprev, x@ev] ; (xbodyx)
tnext = tprev + h;
datalist = Append[datalist, {tnext, xnext}];
Xprev = xnext;
tprev = tnext;
] // Timing
Out[158]=
{0.243042, Null}

In[13Al=

Sigedels
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In[159):=
xi=1;
ti=0;
tf = 103
nhax = 50@

tf - ti

nMax
Out{163]=
0.02

structure of the solution: ~ datalist = {{ty, x}, {t;, x1}, {t2, X2} ...}
In[154]:=

datalist = {};

Xprev = xi;

tprev = ti;

datalist = Append [datalist, (tprev, xprev}]
Out(157]=

({0, 1}}

Sdotels

xnext = xprev + h f[tprev, xprev]; (+body#)

tnext = tprev + h;
datalist = Append[datalist, {tnext, xnext}];
Xprev = xnext;
tprev Qnext;
] // Timing
Out[168)=
(0.001803, Null}
In[189]:=
dataplot = ListPlot[datalist, Joined - True, PlotMarkers - None, PlotStyle - Blue]
Out[169)=

If you do not believe me, you can go in and you can go out and try this out, you can check the
computation time. So, let us say with 500 points, the computation time involved is in the For
loop. So, at the end of the For loop, I will apply timing to it and calculate the time. So, with 500
points, it took 0.0019 seconds, that is 0.002 seconds to calculate 500 steps for this function. Now,
if I make it 10,000 that will be much larger than that.

So, let us go ahead and check that out. What happens when I make it very small? How does the

computation time change? You see, it is from 0.002 seconds it has become 0.2 seconds, became



almost 100 times as much for doing this computation. So, if you are solving a much more
difficult and challenging problem, the time cost becomes 100 times more that means that much
more computational power, you require that much more hardware you require and that is

something that is not going to be feasible for all the problems that you are going to solve.

So, therefore, one has to think of optimizing the algorithm that you are using for the accuracy
that you want. So in this case, the accuracy that we want, nMax equal to 500 is quite decent. So,
we will stick to that value. As we go along in this course, we will explore more methods of
advanced methods, improved methods, which will take the small value, reasonably large value of

h, but still give me smaller accuracy.

But let us go ahead and do a little bit more, you know, learn how to make this code more
efficient. So, let us quickly review what we have done. We initialize the problem by giving the x
initial, ¢ initial, ¢ final calculate gave decided some value nMax, calculate 4, then we initialized
datalist, previous value of x, previous value of time, and then we appended x previous, ¢ previous

datalist and then we ran the, executed the For loop.

So, this was our code. But I can actually make my code much more efficient and much more
compact. So, let us go ahead and see how to do that. So, let me leave this part as it is, which is
my definition part, what I will do is I will get rid of all of this by simply putting that inside the
For loop over here. In fact, I do not even need n. Notice that I am not using n anywhere inside

the body of the For loop, 7 is just being used as the counter.

(Refer Slide Time: 39:49)



structure of the solution: ~ datalist = {{ty, xo}, {11, x1}, (2, %2} ...}

For[datalist = {{ti, xi}};
xprev = xi;
tprev = ti, (x»initializations)
Length[datalist] < nMax + 1, («conditions)
N4+, (¥increments)
xnext = xprev + h f[tprev, xprev]; (+bodysx)
tnext = tprev + h;
datalist = Append[datalist, {tnext, xnext}];
Xprev = xnext;
tprev = tnext;
] // Timing
Out(168=
{0.001803, Null}

In[169]:=

dakanlad 1 2adRlabrdabaldiat Taduad . Teia NlakMavhawa .

Sdotels

solnplot = Plot[e™", (t, ti, tf}]

Outi78}=

In178):=
Show[solnplot, dataplot]
out[17g)=

So, I can actually do that by simply rather than using n for initialization, I can go ahead and
initialize data list right over here as the previous value, so let me go ahead and decide, define the
previous value. So, let me go ahead and the previous value is i and Zi. So, this is my datalist
and since [ said I can enter multiple statements at the same argument. So, in the initialization
argument, [ will enter multiple arguments by separating them with semicolons and for that

purpose, I will also say x previous as i,



So, this is my initialization of x previous, and ¢ previous as ti. So, all of this is initialization for
me, that takes care of all these 4 lines and I can go ahead and delete them. They are not required
for me, ok, great. So, now my new initialization contains x previous, ¢ previous and datalist
initialization all together in 1 statement. I do not really require this either, all I need to do is

check the length of the datalist.

So, say the length of datalist should be less than equal to nMax + 1. It already has the initial point
f0. %0 or i i and total number of instances are going to have been inside the datalist is nMax
+ 1 because nMax is the number of steps. So, then I do not need this increment n++, in fact, |
can copy this line. I can go ahead and do this in increment, increment is always executed after

the body, so I can remove these 2 lines and put them in the increment.

There we go. So, “prev = Tnext and Eprev = Tnext becomes my increment and my body
becomes calculation of next and next and I can also go ahead and remove this because this is
the increment step. This is not really a calculation, I am just incrementing my datalist. So, I can

go ahead and also that in the increment.

So, now my initialization contains initialization of datalists and ““Prev and tprev Tn the condition

checking I simply check whether my data list has contains nMax + 1 instances or not, if it is less

than that continue to run. When the body is executed it calculates “next and next from “prev

and f‘[m"' .

Once that has been calculated I increment my “prev t

prev and the datalist, so I can organize my
for loop up in that particular way, and let us go ahead and check that this is actually doing the
same job. So, let me go ahead and start from this definition part. I will go ahead and exclude the

For loop make the data plot, it is the same data plot. Of course, the same result.

(Refer Slide Time: 43:28)



nMax = 560
tf - ti
nMax

h= /I N

Out(188=
0.02

structure of the solution: datalist = {{fy, xo}, {11, x1}, {2, X2} ...}
In[18¢]:=
For[datalist = {{ti, xi}}; prev= {ti, xi};, (+»initializations)
Length[datalisty’s nMax + 1, («conditions)
prev = next;

datalist = Append[datalist, next];, (xincrementx)

next = prev + {h, hfeeprev}; («bodys)
] // Timing
Out[189]=
{0,002478, Null}

In[177):=
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Sdotels

dataplot = ListPlot[datalist, Joined - True, PlotMarkers - None, PlotStyle - Blue]
Out{190}=

0.01} k
i 2 4
In[191]:=
solnplot = Plot[e", {t, ti, tf}]

Out[191)=

ol |

006]

005|

I can go ahead and make my For loop even more compact. In fact, what I will do is rather than

Eprev separately, I will just call them as one item that is previous and simply

writing ““prev and
go ahead and define it as a pair of 2 numbers, %i and *i. Once I define my previous like that, my

updation also is becomes previous is equal to the next.

So it let me write it as next and this should be my next I can calculate next also in 1 go by saying

next is equal to next is a set of 2 items. So, that is prev + h and h*f{(prev). So for that I will take



f@@prev, note the use of at at operator. f acting on previous is going to remember the

previous is a 2 tuple, that is what it is intended, a previous is (1,2).

f@@prev is going to or let me call it g@@prev will be g(1,2), what we want to do is we
want to take our function f and apply it to the arguments 1 and 2, and now evaluate to some
number. All right, so what is this statement doing is it is calculating, I do not need this statement

anymore now. So, you see my For loop becomes much more compact now.

I am calculating the next point equal to previous point plus the change in the previous point or
the increment in the previous point. So, previous point is a list of 2 items. To that [ am adding
another list or 2 items and in Wolfram language or Mathematica, the 2 lists can be added 1 item
by item. Therefore, # will be added to the first component of previous which is the time value
and h*f applied to previous will be calculated and added to the second argument of previous thus

giving me next.

And once I open next in the increment part, I am going to set previous equal to next and append
to datalist next and that makes my For loop very-very compact. So, let me go ahead and initialize
this again. Run the For loop again and calculate this again and you see the same results. So,
during the intended task, and so what we have accomplished by doing this as I made my code

much more compact.

Notice that it scrolled back and forth up and down again and again to see my code before but
now my entire code fits in in 1 line, we can in fact, go ahead and make this code even more
compact and add a few more lines. But we will take this up and the next time when we go ahead
and improve our Euler’s method to Runge-Kutta second order or improved Euler method. So, we

will see you next time.



