
Physics through Computational Thinking
Dr. Auditya Sharma & Dr. Ambar Jain

Departments of Physics
Indian Institute of Science Education and Research, Bhopal

Lecture 24
Technical Prelim 4 – Manipulation of Lists using at, atat, -at operators

(Refer Slide Time: 0:27)

Welcome back to Physics through Computational Thinking. This is technical prelim 4 and we

are going to discuss this time few technicalities of Holdform language of Mathematica and we

will learn about the implementation. What we are going to do today is we are going to learn

about manipulation of lists using @, @@ and /@ operators. Let us say we have got a list of 1, 2,

we want to apply some function on this list, let us say a Plus[1,2] simply means 1 + 2 = 3.

If you want to see it, in it is, without evaluating, you want to see it in its natural form without

evaluating it is 1 + 2, or applying Holdform, on plus does not allow to evaluate and you can see

the expression that is what Holdform does. The // operator is postfix for evaluating a function, so

I want to evaluate any function let us say, I want to, let us say I want to do I

want to simplify this.

So if I want, there are 2 ways of doing this, I can apply a postfix expression for simplify and that

will simplify this to 1 so // is same as postfix operation. So, // is postfix application of a function.

Similarly, if I want to apply a prefix application of function, for example, on the same

expression, I will copy this expression over here. I can also apply simplify on this before and that

apply simplify only on .

So, I should include, enclose this inside the square brackets. So now the simplify operation acts

on entire bracket when I apply this, it gives me 1. This is equivalent to doing this up and closing

inside simplify and evaluating it. So // is does postfix, at operator is prefix

application of the function and finally, this is the standard form. Standard Form means the, the

usually the way we apply functions that is we write the function and put its argument inside the

square brackets.

So, this is the standard form. Similarly, if I have got you know 2 arguments for example, as in

the case of plus which is at 2 numbers or 3 numbers or 4 numbers a lot. For such a thing I can

also do the following, I can define a list, which is elements 1, 2, 3, 4 and I can say apply plus to

this. Know it is what happens when I do that. It does not change anything because it is applying

plus the entire list.

What I want to do is I want to apply plus to the to the whole thing, and that gives me that gives

me the evaluation of adding 1, 2, 3, 4. What I want here, the the @@ operator applies. Works

similar to at operator but takes each element of the list and takes that as an argument of the plus

function. To see it more elaborately, let me take a function that I have not defined and let me

apply that function f at this list 1, 2, 3, 4, it is equivalent to a function f applied on the arguments

1, 2, 3, 4.

So, at at operator works on lists and takes the all elements of list as argument of a function.

Compare this with f@(1, 2, 3, 4). This will take the entire list 1, 2, 3, 4 as a single argument of

the function f as shown over here. So, the function f has only 1 argument which is this list 1, 2, 3,

4. So, both at at and at prefix but at up takes, the whatever follows at whatever expression levels

at is taken as the argument for f and for at at operator it must the whatever expression follows

that list that follows that each argument is taken as, as the argument for the function.

(Refer Slide Time: 6:00)

Similarly, there is also a map operator. Map operator or the /@ operator. If I take a list such as 1,

2, 3, 4, I can apply some function f/@(1, 2, 3, 4) the action that is generate me a list where the

list contains , and so on. So, slash at operator is a map operator that is maps a list or

array of elements to an array of function applied to each of the elements of the array. So, this

map operator simply takes the function and distributes it over the list giving me another list

where f is applied to all these different arguments.

If you want to read more about this, you go ahead, select this operator and press function and

they will give you the help for the map operator and you can read a lot about it. You can also use

a map operator with the symbol map, Map rather than the /@ but /@ is much more convenient

and will end up using several times. This was a quick overview of the map operator, /, /@

operator, @ operator and @@ operator.

