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Damped Harmonic Oscillator – LCR Circuit 

Welcome back to Physics through Computational Thinking. Today we are going to talk about              

damped oscillators and in this video, we will work out through examples of damped              

oscillators, so let us go ahead and get started.  
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For a quick review we talked about a simple harmonic oscillator in the second week, this is                 

the equation for simple harmonic oscillator and its solution can be written in these 4 different                

ways. And we plotted some of the styles of solutions and we saw that all of them represent                  

oscillatory sinusoidal behaviour. Let us go and make this equation a little bit more              

complicated by adding a damping term to that and to do that we will take the example of                  

LCR circuit.  
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So, we will take a damped oscillator which is damped by resistance and this is a very natural                  

example to consider because it is extremely difficult to make a pure LC circuit. All the                

components are made out of metals, inductors, and capacitors; they come with some amount              

of resistance. So, there is not really a perfect inductor or perfect capacitor. So, wherever you                

build a LC circuit, there is always a small resistance component to that and that is being                 

represented by this resistance R over here.  

So, we will take this circuit to be an LCR circuit, where inductance , pure capacitor and             L    C   

resistance ​R in the circuit. And for the LC circuit, we saw that the equation was ​L dl/dt + Q/C                    

= 0. Using the Kirchhoff’s law of loop, when we add a resistance, the potential drop across                 

the resistor is ​I*R and adding that terms give me the equation for the damped oscillator or this                  

LCR circuit is ​L dI/dt + Q/C + IR = 0​.  

Now, the current I can write as ​dQ/dt​, so when I write current as ​dQ/dt​, I get this equation                   

over here. And ​d​2​Q/dt​2 ​is now ​-Q/LC​, this is a restoring term and ​-R/L dQ/dt which is the                  

damping term because ​dQ/dt is like change of current and it is always in the negative                

direction, negative to change of current and therefore this is the term that causes damping.               

And actually, you know when you add a resistor to a circuit. There is Joules heating, that                 

joules heating is responsible for losing the energy of the system.  



And therefore the oscillation amplitude or the charge in the capacitor is going to die down                

and that is why we understand this term as a dissipative or a damping term. So, let us go                   

ahead and look at this problem over here. There are 4 or 5 different parts of this problem and                   

what we will do is, we will go ahead and solve out these parts and understand how to go                   

about it.  
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So, the first question here is to identify the time scales in this problem and the role they play.                   

I have got an equation, I have got a circuit, this equation has got a bunch of time scales, you                    

have to figure out what are the time scales in this problem and what is their importance?                 

Then, we have to calculate at what rate do we expect the average energy in the capacitor to                  

reduce. And then, the third part of the problem is try the solutions of the form given below.                  

This is the solution that is given.  

We will try out whether this is an acceptable solution for this differential equation and often                

enough a good way of solving differential is knowing a solution or guessing a solution. This                

is what we are trying to do here, we are guessing a solution, we are assuming that the solution                   

is out of this form and see if this satisfies the differential equation, in that process, we will fix                   

some of this unknown constants in the problem.  

Later on, we will try to solve this as an initial value condition with the initial condition that                  

Q(0) ​= and = 0 and ​Q that is the charge in the capacitor at 0 is . And I think                       



this last questions are repeat of b, at what rate average energy the capacitor is decreasing                

assuming a very small resistance in the circuit, so I think that is just the repeat of this, so we                    

can remove that. Let us go ahead and solve this problem, so we will go back to the                  

blackboard.  
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The equation that we have got here is ​d​2​Q/dt​2 ​= -Q/LC -R/L dQ/dt​. We have to find out what                   

are the time scales in this problem. Now, we can read out the natural time scales that are                  

present in the problem using the differential equation itself, each of the term here has               

dimensions of ​Q/t​2​. You see that this term has dimensions of charge by time square.  

And, if this equation is right then each of these terms has to have the same dimensions and                  

that tells me that ​LC must have dimensions of time square and similarly here I see this is a 1                    

term of time present here that 2 of here is ​Q n the numerator, there is other ​Q in the                    

numerator, so 1 ​t dimensional cancel out. So, I must have that ​R/L should have dimensions of                 

1/t​. That is the only way the time will make sense.  

Because ​LC dimension of time square and ​R/L has dimensions of time. I see that if I multiply                  

LC and ​R/L​, so ​LC and ​R/L​, if I multiply them together, I get dimensions of time. But, this is                    

simply ​RC​, and it is not surprising we know from ​RC circuits that ​RC is the time constant for                   

the ​RC circuits. Therefore, we get 3 dimensions, 3 scales in the problem or 3 dimensionful                

quantities in the problem that are dimensions of time.  



Made up with the constants of the problem, so this what we call as time scales in the problem,                   

so there are 3 time scales in the problem. We have got first time scale ​LC​, second time scale                   

R/L​, where ​LC is not the time scale, the time scale here is √​LC and the time scale here is ​L/R​.                     

And the third time scale, I have here is ​RC which is in some sense an emergent time scale                   

given the time scale, given this is first 2 time scales. 

So, we have got 3-time scales in the problem, let us see what this time scales are doing and                   

for that, we have to go back to physics, we have to look at the equation and ask what is each                     

term doing and we can note from here that, this term over here this is responsible for                 

oscillations. So, this must be the primary time scales for oscillations and clearly, resistance is               

the damping factor, this is the damping term.  

So, ​L/R must be responsible for damping. It is not evidently clear directly what is ​RC doing                 

but it is an emergent time scale, it is a product of oscillation in damping time scale. So, these                   

are the 2 important time scales in the problem. The oscillation time scale and the damping                

time scale and they are doing interesting dynamics that is what we are going to explore in this                  

problem.  

Let us go to the next question says that what rate do you expect for the average energy in the                    

capacitor to be reducing and that we can do the estimation based on dimensional analysis that                

we have done over here. Let us go and think about that, so I want to find what is ​dE/dt​. To                     

estimate that, I can use dimensional analysis and dimensional analysis simply says that             

numerator is dimensions of energy.  

So, we can simply go ahead and estimate the dimensions of energy. So, energy in the                

capacitor is given by ​Q​2​/2C​, so that is an estimation. I can write the energy scales 2 square by                   

2C. But, ​Q itself is given by which is the initial charge in the capacitor. So, we can                   

estimate approximately energies of the order 2​/​2C and time, there are various different             

time scales present here question is which time scale to choose.  

And we might be tempted to say that let us choose the damping time scale ​L/R because the                  

time responsible for damping is ​L/R​. So, let us go ahead and put that time scale over here and                   

that gives an estimate for dE by dt or the rate at which energy is changing in the capacitor.                   



That is 1 estimate and this approximately values out to 2​, the constants are not important.                

So we get 2 ​R/LC​.  
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Alright, let us go ahead and look at another way of the same problem and for that, I will make                    

some space here, I will erase this part. And let us go and think of another way of doing this                    

problem and I can say ​dE/dt can be estimated by, especially when the capacitor, when the                

resistance is very small, joule heating is very small, damping is very slow. I can say that                 

dE/dt​ is 𝛥 ​E/ ​𝛥 ​t ​, where 𝛥 ​E ​ is rate at which energy is changing.  

So, energy is lost in one cycle and in one cycle because of joules we know the energy lost is                    

IR​2​. It is the order of ​IR​2 and the time taken for that is the oscillation time period which is of                     

the order of √​LC and we can go ahead and put in units for ​I​. ​I is current, so it is again current                       

over time. So, current is , current is charge over time, charge is , time is √​LC​.  

So, I get one another √​LC factor and that squares up because I already have 1 √​LC factor and                   

resistance squared, so that gives me 2 ​R/LC​. I think, sorry this is not ​IR​2​, it is ​I​2​R​, so let me                     

go and correct that. So, let me go ahead and correct that, joule heating is ​I​2​R/​𝛥 ​t which is the                   

√​LC​ and I get ​I​2​ is ( /√​LC)​2​ and I get.  

Actually, the power is ​I​2​R​, so I have to multiply 𝛥 ​E is joules heating which is ​I​2 times, the                   

time, 𝛥 ​t which is again of the order of oscillation time period. So, ​I​2 is ( /√​LC)​2​, times                 

R​/√​LC ​*𝛥 ​t ​ which is of the order √​LC ​.  



So, as a consequence, I get here 2 ​R/LC​. Interesting thing is that by both logic we found                  

the same result. So, the naive dimensional analysis over here gave us ​d/dt simply based on                

dimensional analysis gave us 2 ​R/LC and when we took into account physical input that               

damping is happening because of joule heating.  

Joule heating is ​I​2​R​, it happens for a time period for 1 time period of oscillation that is 𝛥 ​t ​and                    

that 𝛥 ​t is given by √​LC ​. As a consequence, we got substituting all of that and estimating                 

current is over the oscillation time period because of the charge is going out of the                  

capacitor over the oscillation time period.  

The estimated current is /√​LC and putting out altogether we get the same result, so               

physical input, and naive dimensional analysis using simply dimensions of energy on time             

give us the same result. So what we learn from here is dimensional analysis is a very                 

powerful tool, sometimes we can get fantastically accurate results by simply doing            

dimensional analysis.  
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Let us go ahead and look at the next part of the problem which says that try this form of the                     

solution and see if this works out as a solution for this differential equation. So, let us go                  

ahead and try that out. And we found the solution that you want to try out is ​Q(t) = A e​-𝛼t                     

cos(𝛽t+𝜙)​ and in order to do this, I will need to find out what is ​Q (t)​ or  which is ​A​.′   

For the first term I get -​𝛼 e​-𝛼t c​os(𝛽t+𝜙) and taking the derivative of the cosine term I get ​A                    

e​-𝛼t​, the derivative of cosine is a ​-sin​. So, I get the -​𝛽 sin(𝛽t+𝜙)​. So, that is your prime and I                     

also need ​Q (t)​, so for that, I am going to take ​Q (t) and take one more differentiation and  ′′          ′        

that is going to give me ​A​, again when I differentiate it with respect to ​𝛼​. I get -​𝛼 ​2 ​and ​e​-𝛼t                     

c​os(𝛽t+𝜙)​.  



Taking the derivative of the cosine term gives me -​𝛽​, so I get A(-​𝛼​)(-​𝛽 ​) ​e​-𝛼t ​sin(𝛽t+𝜙) ​. Coming                 

over to the second term over here, I get plus ​A​, I am taking derivative with respect to ​𝛼​, I get                     

(-​𝛼​)(-​𝛽 ​) ​e​-𝛼t ​sin(𝛽t+𝜙) and taking the derivative of the ​sin ​, I get ​A ​e ​-𝛼t​. I get derivative of                  

cosine, and I get ​𝛽 ​ out, so it is -​𝛽 ​2​ and I get c​os(𝛽t+𝜙) ​ back.  

So, that is ​Q (t) and ​Q (t)​. Let me go ahead and clean up and to clean up, what I will do is I   ′   ′′                   

will go ahead and write ​Q (t) as ​A e​-𝛼t​. And in the brackets, I can write -​𝛼 c​os(𝛽t+𝜙) and -​𝛽     ′                

sin(𝛽t+𝜙)​. And, again collecting terms in ​Q (t), ​A e​-𝛼t comes out. I get 2 sets of term one is      ′′              

c​os(𝛽t+𝜙)​ and that is multiplying, -​𝛼​2​ and -​𝛽 ​2​.  

So, I can get rid of that and ​sin(𝛽t+𝜙) term is multiplying -​𝛼 ​𝛽 twice. So, I can get rid of that                      

also. So, the cosine term is, comes with (-​𝛼​2​) (-​𝛽 ​2​) c​os(𝛽t+𝜙) and sin term comes with -2 ​𝛼 ​𝛽                   

sin(𝛽t+𝜙)​. Now, I can go ahead and get rid of this stuff and now what I want to do is, I want                      

to look at the differential equation. So, that is my ​Q(t)​.  

Let me write down my differential equation, differential equation was ​Q (t) = -Q/LC - R/L          ′      

dQ/dt​. So let us go ahead and substitute ​Q , ​dQ/dt and ​Q in this equation and compare on        ′           

both sides the coefficients of sin and cosine terms, and, so if I look through all of that and                   

compare coefficients of cosine term from ​Q (t)​, I get (-​𝛼​2​) (-​𝛽 ​2​) from ​Q (t) which is over      ′′       ′     

here times ​e​-𝛼t which is going to cancel out, so rather coefficient of ​e​-𝛼t times cosine which                 

was linear in the way to form ​𝛼t times sin. So, comparing the coefficient, I get from the                  

left-hand side -​𝛼​2​+​𝛽 ​2 and that must be equal to the right-hand side which is ​-Q/LC from ​Q​, I                  

get the cosine coefficient as simply one that is multiplied by ​1/LC​.  

So, I get that and from ​dQ/dt​, I have got a cosine term over here whose coefficient is -​𝛼​. So, I                     

get minus minus plus, (​R/L)*𝛼​. That is my equation 1 and comparing coefficients of sin, I get                 

from the left-hand side ​Q is the coefficient of sin, I get -2 ​𝛼 ​𝛽 and that is multiplying ​A e​-𝛼t    ′′                  

times sin, coefficient of that is this and over here. On the right-hand side I have got ​-Q/LC                  

which does not have a sin term.  

It only has a cosine term so we do not give any contribution from there. But, from ​dQ/dt​, we                   

have got a sin term, so I get (-​R/L)*​(-​𝛽 ​), so it becomes +​𝛽 and that is equal to let me put that                      

back in. So, this is the left-hand side, the right-hand side the first term gives me no                 



contribution, the second term gives me (-​R/L)*​(-​𝛽 ​) so that it becomes plus, gives (​R/L)*𝛽 ​. So,               

this is equation number 2.  

Now solving 1 and 2, we get, actually from 2 we get two solutions, equation 2 gives me two                   

solutions, it gives me either ​𝛽=0 or ​𝛼=-R/2L​. I think there is a sign mistake, I should get ​𝛼=                   

R/2L​. So, there is a small mistake here, this should have been a plus sign, this should have                  

been a plus sign, so now from equation 2 we get two solutions either ​𝛽=0​ or ​𝛼= R/2L​.  

Now, ​𝛽=0 means that this term becomes simply a constant c​os(𝜙) which can be absorbed               

inside ​A​, therefore this term is meaningless and the solution is only ​e​-𝛼t​, which simply means                

that it is exponentially decaying kind of solution. And that is a solution without any               

oscillation and this is called the overdamped case. So, ​𝛽=0 ​ gives me over-damped oscillators. 

And that happens, when that happens the first equation gives me the value of ​𝛼 and so for                  

overdamped oscillators I get ​𝛽=0 ​, so I get -​𝛼​2​= ​-1/LC+(R/L)*𝛼 which is a quadratic equation,               

we can solve and you get 2 values of ​𝛼​. So, the 2 exponential decay rates for 2 different                   

branches of ​𝛼 and our general solution will be a linear combination of those 2. I will leave                  

that for you to figure out.  

Let us go ahead and talk about the other case where you get this branch of solution and this                   

corresponds to underdamped oscillators and for this case I can go ahead and substitute ​𝛼 =                

R/2L inside the first equation and when I solve for the ​𝛽 ​, I am going to get, I need some space                     

for that, so for underdamped, I am going to get ​𝛽 = 1/ ​√​LC - R ​2​/​4L​2​.  

Therefore, what I see is that this equation provides me a solution for my differential equation                

urges me more than 1 branch of the solution, it gives me a branch of the solution when I have                    

got ​𝛽=0 ​, that means no oscillation, just exponential decay, then I have got under damped               

oscillators where alpha is non-zero and beta is non-zero, I have also got a third mode which is                  

called critically damped and that happens when I get exactly this term.  


