
Physics through Computational Thinking
By,Dr.Auditya Sharma and

Dr.Ambar Jain
Department of Physics

Indian Institute of Science Education and Research, Bhopal
Lecture 2

Technical Prelim-1

Hello everyone, last time I gave you a brief introduction to Wolfram cloud. What we will do

today is: we will go to Wolfram cloud and start implementing some of the things.

(Refer Slide Time 00:36)

Today is the first technical prelims. So, what we are going to do is: we will learn the basics of

few of the functions and see how it is implemented in Mathematica. Once you have opened

your Wolfram cloud Mathematica file, you can go ahead and compute something to test that

you are online and it is working. Once we are here, today's objective is to discuss three

particular functions: one of them is the 'Plot' function, the other one is 'Table' function and the

third one is 'Manipulate' function. Today's lecture, we will call as 'Technical Prelims'.

So, we can simply go ahead and introduce a format here, using the 'Format' toolbar. I will

introduce a title, we will call this as 'Technical Prelim 1'. So, technical prelims will introduce

you to Mathematica functions. It will be basically, understanding how to implement the

functions. The technical prelims will not include any discussion about physics or

mathematics. They will just be understanding how to implement Mathematica functions.

So, today we are going to talk about 'Plot' function, 'Table' function and 'Manipulate'

function, because this is something we will require for the next session. So, let us go ahead

and start with the Plot function. So, at this point, I can go ahead and introduce a section.

Plotting using Plot function: Plot function is a function in Mathematica, which allows you to

plot graphs. So, we will take a simple example. As always in Mathematica, this is the name

of the function and the arguments of the function are put in the square brackets. So, I have

created a pair of square brackets and inside that I am going to put my function. All the

Mathematica functions start with a block letter.

So, in this case, I want to plot 'sine' function and 'sine' function again is a function in

Mathematica which starts with the block letter S and the argument of the 'sine' function will

be put in these two square brackets. As you hover your mouse over these square brackets, you

can see which brackets are closing, in the sine function. I will go ahead and write 'Sin[x]' and

then I will say, I will plot this from x =[-10,10].

Now, note the way I have given the argument over here, this is the second argument of the

plot function and 'Sin[x]' is the first argument of the 'Plot' function and the two arguments are

separated by a comma. The second argument is specifying, what is the name of the variable

in which the plot has to be made and what is the range of that variable?

So, here the variable name is x and this x matches with the x over here and the range: the

minimum value is -10 and maximum value is plus 10. We are going really very slow over

here so that we can understand some of the basics. Since Mathematica is a symbolic

programming language, I can put a 'Sin[y]' over here and call this 'y' and, that does not

change anything, it means the same thing. At this point, I will go ahead and evaluate.

(Refer Slide Time 04:33)

For evaluation, I told you, you can click on this little gear icon over here and you can say

evaluate cell or if your keyword allows it, you can press shift plus return or shift plus enter on

your keyboard. So, when we plot a 'sine' function, this is what we get and as I said you can

call this as anything else. You can call this as 'a', and that is perfectly fine, you will get the

same result.

So, this is a plot of the 'sine' function. At this point, I want to compare this function with let

us say another function. Let us say, I want to compare this with 'Cos' function.

(Refer Slide Time 05:09)

So, I can go ahead and expand the first argument of the Plot function, convert it into a list by

enclosing 'Sin[a]' inside curly brackets and then put a comma and say 'Cos[a]'. So, now what I

am asking over here is: I am asking Wolfram language to plot 'Sin[a]' and 'Cos[a]' for 'a'

between [-10,10]. I will go ahead and press shift enter and I get two plots.

And, as you expect the 'sine' function and 'cosine' function are shifted just by a phase of π/2.

So, you see that 'cosine' function is in orange over here and it peaks at x=0 and 'sine' function

is vanishing at x=0 and sine function peaks at π/2 which you do not see here, but what we

will do is, we will make this plot little bit bigger.

(Refer Slide Time 06:11)

So, you can see that. We will give an option 'ImageSize -> Large'. Now, you can see that this

is 5 over here. So, this is approximately π/2. But, to do that more accurately you can control

your ticks and other features of this plot. As we go along, I will show you how to do those

things.

But, for now, in order to make sure that blue is 'sine' and orange is 'cosine', I will add another

option, which is called 'PlotLegends' and in the curly brackets, I will say this is 'Expression'.

When I execute it, it shows me that it adds a legend over here and says that 'Sin[a]' is in blue

and 'Cos[a]' is in orange. Okay so, this is just a very brief overview, starting with some of the

Mathematica functions. As we go along, we are going to learn more and more about this.

Let us go ahead and explore another function called 'ListPlot'. So, let me add that to my list

over here, okay, let us go and discuss 'Table' first and then after 'Table' we will go ahead and

discuss 'ListPlot'.

(Refer Slide Time 07:54)

Now, 'Table' is a very powerful construct or powerful function. It allows you to construct a

table of items. So, for example, if I say Table[n] and then again in the curly brackets, I say n

goes from {1,10}. See what happens. I simply get a list of items over here list of numbers

from 1 to 10.

Essentially what this is doing is: I am saying that I want to take n. I want to take this function

the first argument of the table and execute it for n = [1,10] and then pack all of that into a list.

A list is anything that is between two curly brackets.

So, for example, this is same as 1, 2, 3, 4, 5, 6, 7, 8, 9 and 10. To create this list, I have to

type it manually inside curly brackets, or I can create a very large list by simply executing a

'Table' command. You can also think of 'Table' command is something that generates an

array of something that you want.

So, let us go ahead and play around with it. Let us go ahead and say I want a table of n2. So, I

can simply say the first argument of 'Table' function is n2 and give me the first 10 squares of

integers and, as you expect, you are going to get 1, 4, 9, 16, 25 and so on. We can make it

more interesting. We can also say I want n!. To get a factorial all you have to do is put a

factorial sign over here.

(Refer Slide Time 09:44)

Which is the exclamation mark and you get n!. You can easily check that for the small

numbers, you can easily identify that this is actually n!. So, 'Table' command allows me to

generate a list of arrays and not only that it allows me to do list of numbers. It allows me to

generate list of arbitrary expressions, for example, I can say I want Table of Sin[nπ/2].

And I want n to go from as 0 to 8. So, for n equals 0, you expect Sin[0] is 0, n equal to 1

Sin[π/2] is 1, n equal to 2 Sin[π] is 0 and so on. So now you see, you get the sequence of

numbers corresponding to Sin[nπ/2]. If you wanted to do this symbolically, we could simply

maybe put a symbol π. If I do that for the symbol π I again get, because the system recognizes

this as π.

Okay, I think it is better to type π like that because pressing the escape key takes me out of

the full screen. Let me take another example, I can generate tables of plots. So, inside the

'Table', I will put the 'Plot'. Let us say, Plot[Sin[n x]], should put a space between n and x,

because I want to make tables of 'sine' of 1x, 2x, 3x and so on for x lying between [-10,10].

But, I want to take n to go from 1 to 4, so that means its gonna generate me 4 plots. In fact, it

is going to be an array of 4 plots. Seems like there is some error. Oh sorry, I forgot to put a

comma over here and this should have been x, okay. So, let us go ahead and try this again.

(Refer Slide Time 12:32)

There we go, we have got an array of 4 plots, we can see by clicking on this. This is my first

plot for Sin[1x], this is plot of Sin[2x], this plot ofSin[3x], this is plot of Sin[4x] and they are

all enclosed in a pair of curly brackets. This is where the curly brackets open, this is where

the curly brackets close and I have got 4 different plots. Okay, let us go ahead and go back to

n!.

(Refer Slide Time 13:10)

So, we have got 'Table' of n!, for n from 1 to 10. I will go ahead and assign this array to a

variable. This time, for that I will use an equality and I will call my variable to be, let us say,

"factorials". So, I am going to assign the variable factorials, the value of the

Table[n!,{n,1,10}] for n from 1 to 10. Notice, that the variable right now is undefined as it is

not been assigned any value.

(Refer Slide Time 14:06)

So, it appears in blue the moment I execute this by pressing Shift+Enter. The "factorials"

turns into black, which means this variable is recognized by the system next time I actually

type factorials. Not only that it also gives a suggestion, over here I can click on this and then

when I execute it, I will just get the same array that the value it has been assigned to. At this

point, I would like to make a plot of this.

(Refer Slide Time 14:34)

So, I can say that Plot this but I cannot use the Plot function, because Plot function works for

functions whose argument is some variable x but over here, this is a list of items so I will use

ListPlot and I will enclose factorials as the array inside the ListPlot. When I make a plot, I get

a bunch of points.

You have to look a little bit closely to see the points over here. There is the point here, there

is a point here, there is a point here and it appears that most of the points are lying on zero,

but look at the y axis, the y axis values is so large.

(Refer Slide Time: 15:18)

Let us go ahead and give an option over here. Let us say 'Joint -> True', which essentially will

join all the points. So, now you can see this blue line, which is showing how the n! grows

with n. Now, this says n! grows very-very fast with n. You can see from here that for n=9, the

value corresponding to n=9 is much larger than the value corresponding to n=8, which is

much larger than the value corresponding to n=7 and so on.

This is what is expected, you see that in the table over here and this is something not very

exciting. So, what we will do is, we are going to take Log[n!] because log of n! will not be as

large. And when I take Log[n!], I get this array. Mathematica decides to simply write this log

of that, but does not really matter to us, what we will do now is: we will make a plot.

(Refer Slide Time 16:16)

And now, you see the Log[n!] actually goes much more slowly. The y-axis is not as big and

now, you can actually think of comparing this quantity with something. As a tiny exercise, let

us think about comparing the following things. We will compare 2n, en, sorry let us say np,

where p is a number, en which is an exponential.

Or, let us say pn and n!. Which one of these do you think grows the largest or grow the

fastest, as we increase n? This is something we can simply test out by plotting. So, what we

will do is: we will generate three arrays: one for the factorials, one for the polynomials and np

is a polynomial, pn is an exponential and n! is factorial. So, what we will do is: we will

generate our first array "polynomials" for a fixed value of p.

(Refer Slide Time 17:48)

So, for that I will say Table[np] and just as an example, we will choose p=4 and I will say n

goes from 1 to 10 and we will go ahead and execute that. So, this will generate one array

which I have named polynomials and this is what the numbers look like.

Next, we will go ahead and, say exponentials. If you want, we can copy this from here or we

can simply go ahead and say this time 4n. So, n is in the exponent now, and I will say n goes

from 1 to 10, as before. And now, you see we get another sequence of numbers and these

numbers - initially they are somewhat smaller than these numbers, but eventually, they

become and become much larger.

And finally we are going to take factorials here and we will say n! and n goes from 1 to 10.

And that will generate me the factorial sequence. Now, I want to make a ListPlot of these

simultaneously. For that, in a curly bracket, I will include all three of them, which is the way

to make a ListPlot of all of them on the same plot.

Polynomials, exponentials and factorials, for some reason this is in some strange blue colour

but that does not matter, we will go ahead and plot it and you see there are dots of three

different colours which is still hard to see.

(Refer Slide Time: 20:02)

So, I will say that 'Joint -> True'. And to understand which colour corresponds to what, I will

also go ahead and add PlotLegends option. So, in order to create this arrow, I press a dash

and then a greater than sign and that creates an arrow and in the quotes, I will go ahead and

type Expressions which means that give me a legend for this plot, with expressions or that

would not work, because there is no expression for this.

This is simply data. So, we will say that PlotLegends are: the first one was polynomial, the

second one that we use in the array over here is exponential, and the third one is factorial. So,

blue line is for polynomial, which is the slowest growing function.

The orange line is for exponential which appears to grow really fast. And then finally third

one is factorial, which eventually picks up and goes very fast. Now, since I am not plotting

everything, it is unclear what is happening, how they are competing because I have not

plotted what is happening beyond 8 for these two functions.

So, to get that, I will add another option called PlotRange and I will assign it a value "All".

Let us see what happens with that, there we go. So, polynomial is pretty much invisible

because polynomial growth is very, very slow. You are comparing this 10000 with, this 3

million.

And then exponential is the next one, and eventually, the factorial picks up. Somewhere, in

the beginning, exponential was leading the factorial and then eventually factorial growth

picks up and becomes faster than all these functions. So, this was a quick example of, how we

can compare these various functions. Let us go ahead now, and look at the last item in our list

today the 'Manipulate' function.

(Refer Slide Time 22:41)

The Manipulate function turns out to be something very useful. It allows you to control a

parameter and vary it by moving the sliders. So, suppose I say n and for the first argument of

Manipulate, and for second one I say {n,1,10}. Let us go ahead and execute and see what

happens.

Yeah okay, so now you see the output of Manipulate is this frame, where I see a slider

marked with n and a value printed over here 1, which is the value of n. If I click on this little

tiny plus button over here, it shows me the value of n, and shows me a plus and minus sign

which says, if I click on this, it will increase n, and as a consequence, the value of n will

change here and correspondingly the value of n will change here.

This is the value of the parameter and this is the value of the display. Right now, the

parameter that we are varying is also the value of the function that you want to display. So, I

am getting the same value over here. Let us, go ahead and make this n2, execute it. I can also

go ahead and just move this slider, and as I move this slider you can see this number changes.

I can click somewhere on the slider.

The value of n is 3.82 and you get 14.59 corresponding to that, for n2. I change this value of n

to 6.02, I get a square of that is 36.24 and so on. Well, this is not very exciting.

(Refer Slide Time 24:49)

What we will do is, we will replace this function with a Plot of Sin[n x], for x between [-

10,10]. Let us go ahead and execute that. This time the output of Manipulate is a plot, which

is inside this frame along with the slider for changing the value of n. Since, the first value of

n is 1 here, the slider is initialized, the value of n is initialized by 1 and I am getting a plot of

Sin[1 x].

I never said what is the value of n I wanted over here, but manipulate automatically initializes

the first value that is given for n and when I do that, I can now go ahead and slide the slider.

As, I slide the slider the value of n gets updated and the plot gets updated.

(Refer Slide Time: 25:48)

So, what happens when I change n, I am essentially increasing the frequency of 'sine' function

and the 'sine' functions is oscillating more and more rapidly. Very well, so this was a little bit

about Manipulate function.

(Refer Slide Time: 26:05)

If you want to initialize n by different value let us say 3, so, when you do that, now this will

allow n to be initialized by 3 and you see the slider is set at n = 3, click on the small "+"

button to see that.

Now as you change the slider, you can change the value of n and with that the corresponding

plot of the function. This was just some prelims to get you to understand how some of these

functions work in Mathematica, and in our next lecture, we will use all these constructs.

