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So, in this lecture we will look at the notion of linear superposition, we will look at how we                   

can combine together oscillation and what kinds of signals that can come out of linear               

superposition. So, we will first start by recalling some ideas of linear superposition which              

perhaps you are already familiar with and then we will see how with the help of Mathematica                 

we can visualize some of these ideas. 
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Alright, so, the superposition principle says that if a system is subjected to a bunch of linear                 

forces, so in some sense, this is actually a definition of what constitutes a linear force. If                 

superposition principle holds, then it is linear in nature and if system is linear then               

superposition principle holds.  

So, a familiar example of a linear system is a linear ODE, which comes from the simple                 

harmonic oscillator right? So, we know that in such a system if x​1 and x​2 are two independent                  

solutions of such a differential equation, then an arbitrary combination of these two solutions              

like A * x​1​ + B * x​2​ is also going to be a solution of such a differential equation.  

So, this is a very useful property and a lot of physical phenomena you know have this feature                  

underlying them and it simplifies their analysis substantially. Of course, there are also, as              

opposed to linear systems, there are also a lot of systems which are nonlinear in nature and                 

life is very hard whenever nonlinearities are involved.  

And that is a whole discipline in itself, nonlinear systems. So, but here, so let us just recall                  

this principle, which is that you can have linear combinations also being valid solutions. And               

then what happens to this particular example, the simple harmonic oscillator is that of course,               

we know that Cos(​ω ​t) is one solution, Sin(​ω​t) is another solution, as you can verify by                

explicitly plugging in these functions into the equation.  



And so in fact, the general solution for this x(t) is going to be A*Cos(​ω​t) + B*Sin(​ω​t). So, a                   

completely equivalent way of writing down this general solution for this particular problem is              

A Cos(​ω ​t + ​φ ​). So, as you can see once again, you have two free parameters. right  

So, this is a second order differential equation and it is linear. So, the theory tells us that in                   

fact, there would be two free parameters, it could be either A and B as in equation three or it                    

could be A and ​φ as in this form and these two are completely equivalent ways of writing out                   

the general solution.  

So here, we want to ask what happens if you know you take two signals right. So, it could be                    

signals which have come out of a solution of a differential equation like this or you may be                  

thinking of preparing you know such signals in the lab and you ask, what happens if you                 

simultaneously have both of these kinds of signals present? So, then these two signals would               

add to create a signal which is a combination of the two like here, x(t) = x​1 + x​2​. So, here we                      

want to use Mathematica and plot various functions and see how these combinations would              

play out.  
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So, for this purpose I have considered A​1 = 1 and A​2 = 3. I have just randomly taken some                    

numbers. ​ω is, so I am adding two signals, both of which have the same frequency right so                  

later on, we will consider other kinds of super positions. For now, let us say I am considering                  

two signals with the same frequency ​ω ​.  



So, for simplicity I am taking ​ω = 1. And then I am playing with these phases, ​φ​1 and ​φ​2​. I                     

am defining all these quantities here. And then I have this function f[t], which is               

A​1​Cos(​ω ​t+​φ ​1​) have another function A​2​Cos(​ω ​t+​φ​2​).  

So, this is the mathematical equation which I am trying to add and this is the syntax to make                   

them all you know for Mathematica to understand them as functions here and which can be                

plotted. So, I am just going to create a new function h, which is the sum of these two                   

functions, all very intuitive but there is also syntax in here. So, notice that I have used this                  

function called random real.  

Random real will give you a number between 0 and 1 and drawn from a uniform distribution                 

right. It is a useful function which Mathematica has inbuilt. And here I am trying to generate                 

phases which are truly random. So, I am just taking it to be some arbitrary multiple of ​π ​. I                   

mean, I could have taken it to be an arbitrary multiply of 2​π right. So, but you can play this                    

game. So, let us see what happens. 
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So, if I plot this, I have function 1, function 2, and also the sum of these two functions. So, if                     

I do it again, it looks something like this. If I do it a third time and so on. I can play this                       

game. So f is the solid line, g is this dashed line, but bigger dashes, the smallest dashes are                   

the final sum.  

So, what is most important to observe here is that in fact, all three functions have the same                  

period right, which is not a surprise if you think about it for a moment. You are adding two                   

signals, each of which has the same frequency. So, it is not a surprise that the sum of these                   

two signals also has the same frequency. 

So, and it is sinusoidal in nature. You added two functions, which were sinusoidal, which               

were of the same nature. So, the final signal also must be expressible in canonical form, and                 

which in fact is true. So, this is homework for you to work this out to show in fact, how to get                      

this overall function in the canonical form.  
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So, I said that A*Cos(​ω ​t+​φ​) is one form for this function, but you could also write it as, you                   

know, there are other forms one of them is like here A*Cos(..) + B*Sin(..), but let us say that                   

you want to get to this for expression A*Cos(​ω ​t+​φ​). So, you have to extract these constants                

A and ​φ and rewrite them in terms of A​1​, A​2​, ​φ​1​, ​φ​2​, these are the norms and you need to get                      

to A and ​φ ​.  

So, it is an exercise, a relatively simple one for you to show that these expressions which are                  

flashed here is for A​2 and ​φ​. Using them you can actually work out what A is and what is ​φ​.                     

Ok. So, in order to quickly check that what I have flashed is reasonable, we can take some                  

special cases. So, suppose you take the case where both the amplitudes A​1 and A​2 are the                 

same.  

So, then of course, you can write x(t) as A​1​, a common A​1 outside times cosine of first                  

argument + cosine of the second argument. And with some basic trigonometric identities, we              

can rewrite it as 2A​1 ​[Cos((​φ​1 ​-​φ​2​)/2) * Cos(​ω​t+(​φ​1​+​φ​2​)/2)].  
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So, implying that A is nothing but 2A​1​Cos((​φ​1 – ​φ​2​)/2) and ​φ​(t) is the mean of the phases of                   

the two signals. So, this is just a quick check, but the more general expression is given here                  

and you can work this out. So, it is a bit like one can give it a geometrical interpretation and                    

there is a you know the cosine law, triangular law which one can exploit or you can do it by                    

some other mean.  

So, there is a whole theory of phases and all these things which you might have encountered                 

in a elementary course on waves and optics and so on. Ok, but regardless of your                

background with some basic algebra, this is something that can be computed. So, let us move                

on to the idea of superposing two signals, but of different frequency.  
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So, all this was straightforward. So, now what happens, suppose you add two frequencies,              

which are not the same, so you can again ask will the resulting signal be also of the same?                   

Now, there is no common frequency. Is it going to be periodic at all right? And it turns out                   

that the answer depends on the relationship between ​ω ​1​ and ​ω ​2​.  

If ​ω ​1 and ​ω ​2 are commensurate. That is the key word here. If they are commensurate, then                 

indeed the resultant signal is also periodic. And with period T, which you can exploit, it is                 

like finding the common multiple, least common multiple of these two frequencies right.  

So, ​ω ​1​t is equal to 2n​1​π and ​ω ​2​t is equal to 2n​2​π ​, where n​1 and n​2 are integers and so this is                      

only possible if ​ω ​1​/​ω ​2 = n​1​/n​2​. This is the key condition. So, if ​ω​1​/​ω​2 is can be written as the                    

ratio of two integers or it is a rational fraction, then and only then will your resultant signal be                   

periodic right. So, let us play with Mathematica and see this out.  
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So, when you have relatively independent pieces of code that you are writing. So, we had                

some piece of code earlier, which we started in this session. And then if I want to write more                   

code, sometimes some of the constants that we defined earlier, some of the parameters that               

we defined here here earlier might conflict with what we are going to define later on.  

So, in order to avoid that, a useful method is to clear all the memory from Mathematica inside                  

within one session. And that is to use this thing called clear of global with this very specific                  



syntax. So, you must look at the syntax carefully and get all the fine details right and then you                   

do shift enter.  

So, then I have A​1 = 1 ​ω ​1 = 1. So, just to see how this thing will play out, I am taking ​ω​2 =                         

√ ​2, which is not a rational fraction, which does not make ​ω ​1​/​ω ​2 a rational fraction. So, if I                  

and then A​2​, I am just simply choosing it to be 3 and then I have f and g and I am going to                        

add them and then plot them. So, this is straightforward syntax. So, let me see what happens                 

if I do this. 
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So, there you go. So, the resultant function, I can take it up to even larger. Let me take it to a                      

larger time scale.  

 

 

 

 

 

 

 

 

 

 



(Refer Slide Time: 12:19) 

 

So, you see that it is, it looks kind of periodic, but actually it is not. So, there is no, there is                      

some kind of order. It is pretending to have some order but it is because of this ​ω​2 being ​√​2.                    

So, let us take a smaller.  
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Yeah, so there you go. It is actually never really returning to where it started.  
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So, you will get a you know how irregular the function is, is also something that one can try                   

to study and one can try to quantify. So, but we are not going there at this point. So, we just                     

observe that, in fact, we do not get any recurrence, we do not get periodicity.  
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But on the other hand, if you choose A​1​, ​ω ​1​/​ω ​2 to be a rational fraction like here, does not                   

matter what A​1 is, does not matter what A​2 is and in fact, it does not even matter what, how                    

these phases are related to each other, you can take them you can also play with these phases.                  

For simplicity, I am just choosing ​φ​1 to be 1 as 0 and only ​φ​2​, I will alter and let us see what                       

happens if I do this and so I will plot this function.  
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So, I am plotting both h​1 and h​2​. So, I have h​1​, where g​1 has no phase shift and where h​2 is                      

composed of f and g​2​, where g​2 does have this random phase shift. So, you will see that in any                    

case, the periodicity of this overall function is not an issue at all, you will always get periodic                  

functions, you will get some shift because of the phase.  
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So, there is going to be some, only some details will change. But overall, it does not matter                  

whether you look at h​1 or h​2​, they are both going to turn out to be periodic right. And so the                     

key message from here, this game that we just played is that if there are two signals with                  

different frequencies that we are trying to superpose, the only thing that really counts is what                

is the ratio ​ω ​1​/​ω ​2​. If it is a rational fraction, and for sure, you will get an overall function                   

which is periodic, regardless of the relative phases, else you will not get it, does not matter                 

what the phases are doing. 
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Okay, so another familiar concept in this context is that of beat phenomenon right. So, this                

happens when the two frequencies that are superposed are different, but not too different. If               

they are close to each other then we can get beat phenomenon. So, for simplicity, let us                 



assume that the amplitudes of the two signals are identical. Of course, you can play this game                 

with different amplitudes. And also, here I am taking the phases to be the same. So, in order                  

to not clutter up the analysis.  

So, let us say you have these superposition of these two functions Cos(​ω​1​t) + Cos(​ω​2​t). So                

then, of course, just using the trigonometric identity, this is the overall signal. So once again,                

I will clear this, so I am going to go back and play this game. So A​1 I am taking to be 1 and                        

A​2​ also is 1, just like I have said both the A’s are the same.  

So, you see, I have taken ​ω ​1 and ​ω ​2 to be slightly different. So, one of them is 2​π ​/600 and                    

the other one is 2​π ​/700. And then when I superpose these two, so this is something you can                  

play with various ​ω ​, ​ω ​1​s and ​ω ​2​s. And you will see that when ​ω​1 and ​ω​2 are sufficiently                  

close to each other.  

So, then I am going to plot this envelope function. So, you see that I have the envelope                  

function, which is 2A* Cos(2t( ​ω ​1 – ​ω ​2​)/2), you can think of it as the envelope function. And                  

then if I were to plot on the same graph, I am going to plot the envelope and the                   

superposition.  
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So, you see that beat phenomena involves you know increase in amplitude and decrease in               

amplitude but this overall envelope is given by a much smaller frequency curve. That is the                



curve that is perceived by the ear. So, oftentimes we have heard beats where with sounds, you                 

have two sounds which are being simultaneously played.  

And both of them have frequencies which are very close to each other. And then if you play                  

them simultaneously you are going to hear a waxing and waning of sounds and that is going                 

to have actually much lower frequency than these very large frequency modulation is also              

happening here. So, the amplitude is getting modulated, but that is not really going to be                

perceived as much as the envelope function itself.  
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So, there are two key points to note from here, from this study of this graph. One is that                   

although superposition would be possible for any pair of frequencies, so beats should be              



heard only if the frequencies are relatively close to each other right. So, I mean, this is                 

something that you might have performed these kinds of experiments in the lab if you had                

two tuning folks which are tuned with frequencies very close to each other and they are                

simultaneously stuck.  

So here is able to perceive beats in a scenario where the very large frequency modulation can                 

be skipped, so you do not really care about the details of these fluctuations in the amplitude,                 

the ear is able to perceive only this. And also the other very interesting point is to note that                   

actually the beat frequency is (​ω ​1 - ​ω ​2​)/2, you might naively think that just looking at this                 

expression, it is going to be Cos((​ω ​1​ - ​ω ​2​)/2).  

But in fact, there is this envelope and then there is the other envelope as well, which I have                   

not drawn. So, each of these is going to be separately perceived. So, if you just count the                  

distance in some sense, the distance between two consecutive peaks or two consecutive             

troughs in this curve, that is going to give you the correct frequency, that is the frequency that                  

the ear will perceive. And that is given by ​ω ​1 ​- ​ω ​2​, it is not ​ω ​1 and ​ω​2 by 2. So, this is not a                         

factor of 1/2. 

So, this is another example of superposition of oscillations and how you can get, you can                

visualize beat phenomenon. Now, we will go ahead and look at what happens if you have                

actually two signals which are being superposed along perpendicular directions. 
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So, you have, there is a harmonic signal which is operating along the x axis and another                 

harmonic signal which is operating along the y axis. And if you superimpose these two, you                

are going to get motion which is two dimensional. So, there is an x component to it and a y                    

component to it.  

And you can ask, is there some order that one can get? Is there some method to this? And so,                    

this again, once again some simple analysis is involved and Mathematica allows us to              

visualize this. So, once again, I will start by clearing this global. So yeah, so one thing that                  

we can immediately say is, of course, all motion must be confined to a rectangle, so this                 

rectangle will have dimensions (2A​1​)/(2A​2​) right.  

Along the x axis, your maximum and minimum values are A​1 and -A​1​. Along the y axis                 

maximum and minimum values are +A​2 and -A​2​. So, there is no question of your signal                

being, going outside of this rectangle. But the question here is, how much of your rectangle                

can get covered? Will the whole rectangle be covered or only some part of the rectangle be                 

covered? Is there some order inside here? So, let us look at some random, all the four                 

parameters.  

So A​1 and A​2 are less significant. So, let me just start by putting them to be both 1. You can                     

play with making them different A​1 and A​2 that will only make you get a rectangle instead of                  

a square. It is not very, does not have any dramatic consequences. So let us just put them to                   

be 1. 

For starters, I am going to just take all these to be random ​ω ​1​, ​ω​2​, ​ω​3​, ​φ​1 and ​φ​2​. Let us see                      

what happens. And if I plot the superposition of the. So here, it is useful to plot this with the                    

help of a parametric plot function. So this is this command, so this is some syntax you can                  

look up Mathematica, you can just play with this and see what happens.  
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So x and y are getting superposed and you can plot them as a parametric plot. So, let me first,                    

I have to first run this, only then come to here. There you go. So they will get this very rich                     

behaviour, you see, as you change ​ω ​1​, ​ω ​2​, ​φ​1​, ​φ​2​. Let me run this again. So, in fact, let me                    

keep the parameters as it is. So, I have run here only from time going from 0 to 10. So if I                      

make it go from 0 to 100, let us see what happens.  

So already I see that. So, of course, I told you that it can never go outside of this rectangle,                    

which is a square in this case. It seems like it is a very rich tapestry, some pattern is coming                    

out. And so the question is are there some forbidden reasons here? Is it like refusing to go in                   

certain regions? So, if I run it for even longer and you see that actually, it is not the case.  
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If I keep running it longer and longer and longer, in fact, I can pretty much cover the whole                   

square. And so you can ask the question, is it a generic property? Is it always going to be                   

covered or not right?  

(Refer Slide Time: 23:00) 

 

So, if I, suppose I take a different set of parameters, let me run this so then I see, it looks like                      

this.  
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If I take t to be a 100, it is like this. A 1000, see it is covering up the whole of this region. So                         

in fact, this is a very important question and it could have fundamental implications when               

one is looking at statistical mechanics. So, in statistical mechanics, if you think of this as                

some kind of a phase space, you are often interested in the question of whether your system is                  

able to explore all of phase space.  

If a certain dynamics can totally cover the entire phase space and such systems are called                

ergodic in nature. And so this ergodicity is a prerequisite for statistical mechanics work, it is                

taken as one of the postulates but there are systems which do not satisfy ergodicity.  

And then, the dynamics confines systems to certain, some manifold which is, which does not               

cover the whole of phase space. And so then equilibrium statistical mechanics as usually you               

know studied, breaks down in such cases you know and it is, it continues to be a field of great                    

activity, particularly when in quantum mechanics as well is involved.  

There is a lot of activity even today on trying to understand these questions and how, what                 

happens if ergodicity is broken? And what kind of statistical mechanics comes up in the               

quantum world? And these are all very delicate, subtle questions, which are, which continue              

to be questions for fundamental research. 

But so yeah, so the point here is that just with some very simple games we are playing at this                    

point, we are only just exploring things pottering around with Mathematica. And already we              

see that it can actually open up questions of you know fairly fundamental interest.  
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Okay, so now, the reason why this system is able to cover all of this region is because we                   

have taken it to be truly random. And so this is by you know, you are making them                  

incommensurate in some sense. Because typically, if you take them to be completely random,              

it is very unlikely that there will be some nice ratio between ​ω​1 and ​ω​2 or so on. So, let us                     

play this game. Suppose we take ​ω ​1​ = ​ω ​2​, then what happens?  
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Again, I will clear this, I am taking A​1 ​= 1, ​ω​1 = ​π ​, ​ω ​2 = ​π​, A​2 = 2. Only ​φ​1 and ​φ​2​, let me                          

take them to be random. And then I am going to add them up. And then I have a parametric                    

plot, which I will show.  



(Refer Slide Time: 26:02) 

 

So, this is a game that you can play, right you can generate your own figures of this kind you                    

know using your own random variables you can make all of them random, you can make a                 

few of them random, you can try to build up the complexity. So, here you see that, in fact, it                    

is always going to be periodic.  
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Equal to ​ω ​2​, there is no surprise that when you superpose along different directions, you are                

going to get an overall system.  
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So, for certain special cases, you can actually analytically analyse, so if you put the two                

frequencies to be the same, then surely it is going to be periodic. So, there is going to be this                    

phase difference. So if you take x(t) to be A​1 Cos(​ω ​t), and y​2 = A​2 Cos(​ω​t + ​δ​). So, then you                     

see that for the special case of ​δ = ​π ​/2, you can simply eliminate ​ω and you can extract this                    

curve, which just turns out to be an ellipse. So, that is why it is not a surprise if you try out                      

some other set of parameters.  
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You do it again. Once again, you are going to get another ellipse and so on, you will get                   

many ellipses.  
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Alright. So, what happens if we change, not make the frequencies not equal, but              

commensurate. So if you change ​ω ​, if you make ​ω ​1​/​ω ​2​ to be a rational fraction.  
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So, we will see that in fact, periodic motion would result even if the phases are kept                 

completely random. So, let us play this. So, if I again clear this and I am choosing here for                   

simplicity ​ω ​1​ = ​ω​2​, but you can also take some factor let me say. 
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And then I make the others completely random. So, there you go. So, you get a rich set of                   

possibilities, but these will always be periodic.  
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You have to you have to set the time and then the randomness and so on, but typically you                   

will find that the system will return to where it started.  
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Okay, so you can go ahead and play more and see if you can.  
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These are what are called Lissajous figures, you might have already played with this, you               

might have played with these kinds of figures with an oscilloscope for example.  
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So in the lab, if you have access to an oscilloscope where you can take superpositions of                 

waves along x direction, along y direction and you can generate all these. So, there are very                 

specific ways of generating particular curves. So, homework for you would be to see how               

you can get a straight line, how you can get a circle, what kind of parameters must you do to                    

to get ellipses of various orientation, more complicated shapes, but still periodic, and when              

do you get a periodic motion.  

So, this is going to be homework. So, you must look at this lecture or this module mostly in                   

the spirit of playing. So, the more you play, the more you see patterns and there is some                  

understanding to be derived from looking at these patterns. So, that is what this lecture is                

about. Thank you. 


