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Hello, so in this lecture we’re going to look at some aspects of data analysis and how this can                   

be realized using Mathematica. Then we learn a few tricks of Mathematica along the way but                

also learn some very useful and important concepts of, how to compute error bars and               

oftentimes we have to deal with data of many kinds you know it could be experimental data,                 

it could be simulation data, it could be you know data that you do get it from some some                   

source let us say, and so there there are some basic statistical ideas that we should all be                  

familiar with, and hopefully this lecture will shed light on on how to carry out this kind of                  

data analysis. 
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Okay, so first we will look at some aspects of Mathematica, right? So, we know that often we                  

would like to plot a function for example right? So, with the programming language one of                

the key tasks that we would want to do is to define a function and to be able to plot it. In                      

Mathematica the syntax for a function is like here, for example if I am interested in looking at                  

the function e to the power -x​2​ , Gaussian.  



I would write it like this, you know the capital E is important for exponential, so you this is                   

something that you can easily look up and so when you define a function, so there is syntax                  

with an x underscore, that you need to look at. So, maybe in a separate video or elsewhere we                   

will go into some details of you know various different kinds of functional forms. 

(Refer Slide Time: 2:27) 

 

So, for now just accept that f[x_] comes in, and so the way to go ahead and start                  

implementing this is to press shift and enter, so if I do shift enter it shows that I have defined                    

something called e to the power -x​2​. So, now of course I want to check whether Mathematica                 

really understands this, so then I might just for a test, I could look at you know some                  

particular argument, I can put in f[2] and if I do shift enter it gives me 1/e​4​ right.  
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Bust so, if am interested in finding out the numerical value of this I could put in 2.0 and so                    

that is one way of getting the numerical value but I could also do something like, f[2] // N, so                    

this is completely equivalent I could go ahead and do it and you see that the same number                  

0.0183156 shows up, at time you can go ahead and play with this. So, there are various ways                  

of doing this.  

So, the N can come before the functional evaluation and you have to be careful about the                 

syntax or it can come as a post processing operation, so which is given by these kinds of two                   

slanting lines which are leaning forward followed by N, that is a common standard approach. 

So, then now suppose I want to create a whole table of these numbers, it is not for just one                    

particular value, I want to study this function for a whole range of values, let us say I want I                    

want to go from 1 to 10 in steps of one, then I can go ahead and use this syntax of a table, I                        

can define a table, very useful function to know in Mathematica is that of table.  

If you are familiar with other programming languages, you might have come across say a For                

loop in C or C++ and there are some advantages of using a For loop but oftentimes one of the                    

powers of Mathematica is this table type of function which sometimes allows you to program               

for certain specific task in a in a much more efficient way alright, so this is a useful function                   

to become aware of and to play with. 
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So, now if I go ahead and hit shift enter, then so once again it just gives me these numbers                    

with 1/e, 1/e​4 and so on. Mathematica is unwilling to give you numbers unless you force it to                  

do so and the way to do that like we have seen before is to just put this slash N, so if I were to                         

do this, then I get out all these numbers in gory detail. So, you can look up the                  

documentation, may be there is going to be, like a separate video we might do to explain                 

these kind of aspects, but yeah. 

So, this is also something that you pick up as you go along, right? And once you have a table                    

of such numbers, it is often of interest to get a plot of this kind of a list. And so the way to do                        

that is to use a list plot. 
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And if I were to do this, so you see that for large values of N, so it is practically 0. So it is                        

basically on the x axis beyond a certain point. And it is not a surprise, of course, you can go                    

ahead and beautify you know, these plots using x labels for the x axis and y axis and so on.                    

That is all something that you can look up by looking up  the documentation of list plot. 

So, there is also list log plot, which sometimes is more useful, particularly in in you know,                 

cases like here, when the data falls off so rapidly with x that you are hardly able to notice any                    

difference for larger N and but if you plot it on a log plot, so it is log along the y axis and                       

linear along the the x axis. So, then you see that, you know, it is exaggerated, the fall is                   



exaggerated because of the logarithmic variation along the y axis. So, this is a useful               

command as well.  

So, once you have figured out how to generate such data and to visualize data, sometimes it is                  

useful to be able to just store this data. So, one way to do that is to use this function called                     

export. So, you can go ahead and export an entire table to go to the desktop, you can put it                    

wherever to put it on a folder of your choice on your machine. And then you can go ahead                   

and export it in a dat file and there are advantages of just exporting it into a CSV file, so we                     

might talk about it later on.  

And so if you can export then you should also be able to import, you can also use this                   

complementary function called import. So, you have to make sure that you provide the              

correct path to the file where it is located on your computer. And so you can import it and                   

then put it up in, onto Mathematica so that if you want to carry out analysis. 

So, this is the kind of thing that would happen. For example, say if you have carried out an                   

experiment and you have experimental data, and it could be in a CSV file or a dat file in like                    

here, and then you you want to bring it on your machine and only then we would be going                   

ahead with carrying out the kind of analysis we will describe now. So, this is some basics of                  

the syntax of Mathematica for carrying out the data analysis. 
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Okay, so now we will go into some theory of data analysis. So, some of you must have seen                   

random variables, you might have taken a course on elementary probability theory. So, even              

if you have not, so the idea here is not to give you any sort of rigorous introduction into these                    

ideas, but hopefully, the ideas here will be sort of intuitively clear.  

And so from this discussion, we want to take home a prescription. So, this is a very important                  

prescription. And so, we will sort of delineate the key ideas which go into, you know, how                 

one finds an estimate for the mean and how one finds an estimate for the error bar, and so on. 



So, there's a lot of theory on this. So if you want all the details, and if you want to figure out a                       

rigorous approach to this, then that that would perhaps be a course in itself. But for now,                 

here, we want to just pick out the essence. So, the essence here is the following. So, let us say                    

you have N random variables. So, and we are interested in looking at the sum of these N                  

random variables.  

So imagine doing an experiment, and then taking N readings right? So, you are measuring               

some distance, you are measuring some length or time, or whatever. But let us say that you                 

carry out this experiment N different times. And so you are going to get N different numbers.                 

So they are all perhaps going to be in the same ballpark, but they are not all going to be                    

identical, right? So that is the whole point of you know, a random variable is something that                 

comes from a distribution.  

Now, let us imagine that these random variables are independent and identically distributed.             

So, this is a sort of a basic assumption that one makes to model these kinds of random                  

variables. I mean, of course, there are other random variables which may not be totally               

independent, you know, there may be some variation in distribution and all that but at the                

simplest level, ​we model them as being independent and identically distributed. Identically            

distributed means that all of them come from the same distribution and independent means              

that the value of you know one measurement does not influence another. So, each of them is                 

completely independent.  

Now, let us say that they are drawn from a distribution f​μ,σ​(x), and these ​μ and ​σ are the                   

parameters which characterize your distribution. So, there is a mean ​μ and a standard              

deviation ​σ ​ of course, you can have even higher moments.  

So, the whole distribution of course, contains information about all the moments if you know               

everything about all the moments, then you basically know the distribution itself but ​μ​, mean               

and standard deviation are like the the most rudimentary pieces of information about the              

distribution, they carry some information, but if you want to know everything, then you will               

have to know all the moments or the entire distribution itself.  

So, given the distribution, you can compute the mean, you can compute the standard              

deviation. But if you want to compute the whole distribution, you need not just the first two                 



moments, but you need all the moments. So, this is the theory of probability, which you                

might encounter in a different course. But Ok so let us go through this in an intuitive way, we                   

have the obvious result that if you take the mean of the sum right, I said that we are often                    

interested in calculating the sum of this kind of the distribution of x itself.  

And so one thing that is obvious is that if you take the sum and find its average, find the                    

expectation value of the sum, it is going to be just the sum of the expectation values of each                   

of these individual random variables. And since each of them is identically distributed, each              

of them has the the mean ​μ ​, it is going to be just ​μ + μ + μ + ..​, so on N times, and that just                                 

gives you N * ​μ ​.  

Ok. So, this was straightforward enough, but also a less obvious result holds for the variances                

right? So, this is something that you can work out. Maybe we can post this as a homework                  

problem. So, you can work out the result that if you were to add the variances of, you know                   

all these x​1 and x​2 and x, all the way up to x​N also add to give you the variance of the overall                       

random variable itself.  

So, just like the sum of the expectation values is equal to the expectation value of the sum.                  

So, likewise the sum of the variances is equal to variance of the sum. So, that is a result                   

which I am going to just state and I, it is something that you can, you can show very quickly,                    

very quickly, you can prove it with just applying the definition of variance.  
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So, the variance is simply defined as the second moment right, so given the distribution, you                

know how to compute the mean is going to be ​∫ x ​f dx and the average of x​2 is ​∫ ​x​2 f dx. And                            

then you can go ahead and compute the mean of x​2​. And the mean of x is already known.  

And if you take the difference of these two, you will get the variance. And so you can go                   

ahead and put in this definition and work out this relation. So, anyway the key point is that                  

you get ​σ ​s​2 is equal to N * ​σ​2​. So, each of these has the same variance because it is a                     

identically distributed, and therefore we have this result ​σ​s​2​ equal N * ​σ​2​.  

So, it is also true that if you take a random variable and multiply it by a scalar, the resulting                    

random variables simply multiply by a scalar. So, if you take expectation value of some               

scalar times x, it is going to be ​α times the scalar will come out and expectation value will                   

remains as it is, but if you have if you are doing something similar with variances, variance of                  

α ​ * x is going to be ​α​2​ * Var(x) right. So, now it appears as ​α​2​ this is important.  
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And so a consequence of this is, suppose you are looking at not just the sum of these random                   

variables right. So, this is sort of an intermediate step, we are interested mainly in the mean                 

of these random variables. Suppose, you are looking at x is equal to the sum of all these                  

random variables divided by N, then you can go ahead and convince yourself that the mean                

of all of this is simply equal to the mean of the distribution, right.  

So, because you have each of these <x​1​> + <x​2​> so on, and then you have this factor of N                    

which comes in the denominator, which will just simply cancel with the end that you had in                 

the numerator, and therefore ​μ ​ x is nothing but its just ​μ​.  

And crucially, so if you were to do ​σ​x​2​, so now you have this important ​α ​2 term right. So,                   

when you, when you take this variance of each of these guys, we will go we will go with an ​α                     

outside, and that ​α ​ is just 1/N. And then when you pull it out, you get 1/N​2​.  

And then there is the N, which is sitting in the numerator, because you have N * ​σ​2 in the                    

numerator, which comes from all of these random variables being independent and            

identically distributed with variances, ​σ​2​, and then when you divide by N​2​, so the final answer                

is just ​σ ​x​2  ​ = ​σ ​2​/N right.  
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So, think of these various numbers x​1​, x​2​, x​3 as different values you get for performing when                 

you perform an experiment multiple times, and then you are interested in getting an estimate               

of the actual mean of the distribution. So, oftentimes we do not know what this ​μ is, or ​σ ​is                    

for the, for the distribution from which it comes from.  

And we want to be able to use experimental methods to determine to get an estimate of ​μ and                   

σ ​. So, what we do is, so it turns out that you can just take an average of all these numbers x​1​,                      

x​2​, x​3​, so on and you have seen that ​μ ​x is equal to ​μ ​. So, in fact the sample mean itself is a                         

good estimate of the mean of the distribution.  



So, that is the first result, you can just simply go ahead and take an average of a bunch of                    

numbers that have come out of the experiment. And that already gives you an estimate of the                 

mean of the distribution. And so if suppose we had known ​σ​, then we could have computed                 

σ ​x​2​.  

σ ​x is what is a measure of the error in x ultimately if ​μ is an estimate of the mean, then ​σ​x is                       

going to be the error in ​μ ​. So, we want to get at ​σ​x and to get at ​σ​x​, we would need to know ​σ ​,                         

because we have this relation ​σ​x​2 ​= ​σ​2​/N. And if you know ​σ​, then you can go ahead and                   

immediately get ​σ​x​. And if you have ​σ​x​, then that gives you the sort of the spread about the                   

mean about ​μ ​.  

But the problem is that you do not already know what is ​σ​. And so it turns out that actually                    

there is a way to get an estimate of ​σ itself. So, we will not go into these arguments. So, they                     

have some, you know, nice arguments which are available, if you are interested, you can look                

up a more advanced text on linear on data analysis.  

But so believe me that there is a way to argue that this ​σ​2 is in fact related to the sample                     

variance. So, when I say sample variance, I just mean, you know, you have these numbers x​1​,                 

to x​N​, using just these N numbers, you can extract a sample mean, which is just the mean of                   

these numbers.  

But you can also extract a standard deviation or a variance of the sample. And so that is                  

simply given by the mean of the deviation squared right. So that is one way of thinking of                  

variance right, x is the mean. So, you go to every random variable and subtract the mean from                  

it, and square it. So, it is the deviation square. And if you take the mean of these guys, that                    

gives you the sample variance.  

So, I mean, so this overall, ​σ​2 is something like x​2​, but it is not exactly this. So, there are                    

some arguments which go into this. And it turns out that the exact relation is ​σ​2 is N/(N - 1) *                     

s​2​. So, as you can see, if N is large, this factor N/(N - 1) does not really matter so much you                      

can, for all practical purposes, just take ​σ​2​ = s​2​.  

But the key point is this: ​σ​x​2 is related to ​σ​2 with this factor of 1/N. So that's a very important                     

factor, maybe this N/(N - 1) business is some detail. And oftentimes, it is of no consequence.                 



If your capital N is large, which is often the case you want to repeat an experiment many                  

many, many times, get a lot of numbers and find a mean and as to estimate the mean of the                    

distribution, and also use the sample variance to get an estimate of the error.  

So, the overall consequence of all of this is that the sample mean gives us an estimate of the                   

mean of the distribution but very, very crucially, it is the sample standard deviation divided               

by ​√(N-1)​, which gives us an estimate of the error bars. So, this ​√(N-1) which is sitting in the                   

denominator is of great importance.  

So, what it tells you is, by increasing the number of trials, if you do the experiment many,                  

many more times, your error bars are going to shrink. If we did not have this ​√(N-1) in the                   

denominator, then it would mean that no matter how many trials you did, your data is not                 

going to improve, but that is not the case. So, if you have a systematic result, so then you are                    

going to have, so the more the trials, you have, the better the data, the better is the quality of                    

the data and so, so the error bars are going to shrink. And so this is the relation which allows                    

this.  

And, oftentimes, this is something that is not not very widely known. This division by ​√(N-1)                

and this is the kind of analysis which is carried out, say, when you do Monte Carlo                 

simulations right. Some data may come from experimental situations, you have actually            

measured it in the lab or it could be data which has come out from computer experiments                 

right. And so we might also discuss some of these Monte Carlo methods at a later time.  

But yeah so just keep this point in mind. So, the mean of the sample mean itself is a good                    

estimate of the actual mean of the distribution, which is, which is unknown, and the sample                

standard deviation ​σ ​/√(N-1) to get an estimate of the error in your estimate of the mean. So,                   

these are the two sort of take home messages.  


