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Welcome back to Physics through Computational thinking. Today we will talk about periodic             

motion and dynamics. We will review oscillatory motion and periodic motion. Some of             

which you are already familiar with so this is going to be a quick review about the same, and                   

we will slowly build upon to Anharmonic Oscillators. Let us get started. Let us go ahead and                 

look at another example.  
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This time example of a Pendulum, a Simple Pendulum. As you all familiar for the simple                

pendulum, the equation of motion is given by ML​2 = -MGL Sin(​θ​) where -MGL Sin(​θ​) is                

the torque that is the gravity is applying on this bob and ML​2 is the moment of inertia and                   

is angular acceleration. So, I* is the torque and and from that we get = -g/L Sin(​θ​).  

Now, that is not an equation of a Simple Harmonic Oscillator. So, Simple Pendulum is not                

actually a Simple Harmonic Oscillator. However, if you were to take the small angle limit               

that is small ​θ ​, we immediately say that Sin(​θ ​) will reduce down to ​θ​, and I will get a                   

equation that is given by this line and I immediately see that this is the equation of Simple                  

Harmonic Oscillator with g/L = ​ω ​2​.  

So, from here I see ​ω ​2 = g/L and therefore, ​ω = the famous result that gives you                   

frequency or time period for the Simple Pendulum. 
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Now let us examine this problem from the perspective of a potential, for potential V(​θ​) =                

MgL (1 - Cos(​θ​)) because the potential here we can consider as 0. As a Pendulum goes up by                   

angle ​θ ​, the height of the Pendulum gains is L (1 - Cos(​θ ​)) and therefore, the potential                 

becomes MGL (1 - Cos(​θ ​)). And if you remember, we plotted this in one of the previous                 

videos, when we plotted this we found that for small ​θ it behaves like a quadratic potential,                 

and for small ​θ ​, you can write Cos(​θ ​) as 1 – ​θ ​2​/​2. And you see that V(​θ​) = MgL/2 ​θ​2​. 

From that also you can obtain the same equation confirming that ​ω​2 = g/L or ​ω = .                  

So, therefore, Simple Pendulum also becomes a Simple Harmonic Oscillator in a small angle              

limit.  
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Let us take the third example of Simple Harmonic oscillation, this time from             

electromagnetism. And the example under consideration is LC circuits. So, let us take the              

picture shown over here. We have got a Circuit. On the left hand side we have got an                  

Inductor. On the right hand side we have got a Capacitor and they are connected by a wire                  

and there is a Switch S in between.  

Let us assume that the Capacitor is fully charged in the beginning and there is no current                 

flowing in this Circuit. At that moment, I close the Switch S. What happens? As I close the                  

Switch S we have a complete circuit, where current starts to flow through this circuit. And as                 

a current flows, there is a potential drop across the Inductor given by minus L dI/dt.  

And after some time as the Capacitor discharges, dI/dt maximizes, the Inductor becomes fully              

charged and the Capacitor becomes completely discharged. And after some time as dI by dt               

changes sign Capacitors also charge again Capacitors becomes fully charged. And there is no              

current to the circuit.  

And eventually this flips back so there is an Oscillation going on over here, the charge on the                  

Capacitor oscillate, there is a +Q over here and -Q over here after some time the charge on                  

the Capacitor plates will flip and the current in the Inductor will also, direction of the current                 

in the Inductor will also change. There is Oscillation going on between the potential is               

transferring from Capacitor onto the Inductor and from Inductor back to the Capacitor. 



So, in this problem we will explore exactly that. In terms of equations, we can use the                 

Kirchhoff’s law and write down the equation for this Circuit. Using the fact that the total                

potential in the LC Circuit is 0. We have the potential drop across the Inductor that is L dI/dt                   

+ Q/C that is the potential drop across the Capacitor must add up to 0. Therefore, L dI/dt +                   

Q/C = 0.  

Now, using the fact that current I is dQ/dt, I can replace this I with dQ/dt, I get this equation                    

Ld​2​Q/dt​2 + Q/C = 0. I immediately see that this becomes an equation of Simple Harmonic                

Oscillator where Q as a dynamical parameter, if I divide this entire equation by L, dividing                

this entire equation by L, I bring the equation to this form where my dynamical parameter                

 + 1/(LC)  Q = 0. 

So, charge is what becomes a dynamical quantity and it is the charge that is Oscillating.                

Remember this charge Q was a charge we took on the Capacitor. The charge was the charge                 

that we took on the capacitor, so we find that the capacitor charge is Oscillating. But because                 

Capacitor charge is Oscillating and current is dQ/dt, we will see that the current will also                

Oscillate. So, let us go ahead and work this out.  
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So, since 1/(LC) = ​ω​2​, we get the result that ​ω = . Let us go ahead and analyse the                    

system from the view of the potential, for the system, you can work with a potential by                 

simply adding the potential for the Capacitor and potential for the Inductor, the potential              

across the Capacitor is ½ Q​2​/C for the Capacitor and for the Inductor is a ½ LI​2​. 

So, this is my total potential Q​2​/2C + ½ LI​2 and if I do -dV/dQ, you can verify that you will                     

reproduce this equation back. Therefore, potential formulation also helps in this case. So             

these three were examples of Simple Harmonic Oscillations. We looked at a spring mass              

system, we looked at a simple pendulum in the small angle limit. And we looked at the LC                  

circuit.  

So, we see that the Simple Harmonic Oscillation appears in many diverse examples from              

various areas of physics, even in quantum mechanics, classical mechanics, electrodynamics,           

in almost every field of physics that you see, you will come back again and again at Simple                  

Harmonic Oscillation.  
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So, let us go ahead and look at now a boundary value problem for the LC circuits. So far, we                    

were just discussing examples, in general. But let us now go ahead and ask. Let us go ahead                  

and solve a specific boundary value problem so that we can work out the constants. So, let us                  

go ahead and think of our LC circuit that the Capacitor having a charge Q​0 at time t = 0, as                     

shown over here. So, let us assume that our Capacitor was fully charged at time t = 0, which                   

is when the Switch is turned on.  

Now, let us find the charge across the capacitor as a function of time. And current in the                  

circuit as a function of time, then show that the charge and the current have a phase                 

separation of ​π ​/2. That is, they are out of phase.  

Two Oscillations are in phase when they are Oscillating together, but here, what is going to                

happen is that the charge in the current are not going to oscillate together, charge will peak at                  

a different time and current will peak at a different time. As a consequence, there is going to                  

be a phase shift between charging current and we have to work out that that that, we have to                   

show that that phase shift or phase separation is ​π ​/2. Plot the charge and current on the same                  

plot to demonstrate the phase shift. 

So, let us go ahead and execute this problem again taking our Computational thinking              

approach. So, let us first look at the equation of motion is ​+ 1/(LC) * Q = 0, solution of                    



that is straight forward is Qt = A Cos(​ω ​t + ​φ​). Now we have to find out what is A and ​φ​, this                       

is the solution of this equation. But that does not tell me what is A and ​φ​. 

In order to find out A and ​φ​, I need the boundary conditions. And in this case boundary                  

conditions are given to me. Looking at the boundary conditions at t = 0, my charge is Q​0 and                   

Switch is just turned on. So, there is no current flowing through the circuit.  
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Therefore, I can say that charge in the capacitor at t = 0 is Q​0 and current in the circuit at t = 0                        

is 0. So, these are my initial conditions, current is dQ/dt = 0 at t = 0.  

So, these are my initial conditions given to me, using and the solution is Q(t) equal to                 

Acos(​ω ​t+​φ ​) to find out what is A and ​φ​, so, let me use the conditions here, using the first                   

condition over here, so from 1, I get, Q​0 that is charge at t = 0 is Acos(​ω*0 ​+​φ​) I have                    

substituted t = 0, therefore I get this equal to Acos(​φ​) . So Acos(​φ​) = Q​0 as the first equation                    

for me.  

Second equation gives me dQ/dt that is current at t = 0 so dQ/dt, current is 0, but dQ/dt from                    

here I get is A​ω and derivative of Cos is -Sin so -Sin(​ω ​t+​φ​) and this is 0 therefore from this                    

at t = 0. So, this I have to evaluate at t = 0. So, I get this equal to minus -A​ω​ Sin(​φ​) .  

Now, I obviously cannot have A = 0 because thing A = 0 I get the trivial solution Q = 0. So, I                       

must have from the second equation Sin(​φ​) = 0, Sin(​φ​) = 0 means ​φ = 0 and therefore, my                   



solution is simply Q(t) = Cos(​φ​) becomes ​π ​/2 as, I substitute ​φ = 0 it becomes Cos(​φ​) = 1 so                     

this becomes A.  

So, AQ​0 = A this is Q​0 and I get my solution as At = Q​0 Cos(​ω ​t) now that is my charge and I                        

can work out dQ/dt also now that I know charge is a function of time. I can work out current                    

as a function of time and taking that derivative I get Q​0​ - Q​0​ω ​Sin(​ωt​).  

At this point, I can go ahead and write down Sin(​ωt) also I can write down in terms of                   

Cos(​ωt) and I can write this down as Q​0 ​ω ​Cos(​ωt – π/2)​. You can work out that Cos(​ωt –                      

π/2)​ is nothing but -Cos(​ωt).​ Let us go ahead and verify this.  
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So, I have worked out these conditions for you on the blackboard. I got ​φ = 0 and A = Q​0 and                      

that gave me Q(t) = Q​0 Cos(​ωt​) and I(t) = Q​0 ​ω ​Cos(​ωt – π/2)​. So, we see that from these 2                       

solutions Q(t) = Q​0 Cos(​ωt​) and I(t) = Q​0 ​ω ​Cos(​ωt – π/2) that these 2 solutions have a                    

phase shift and current is lagging the charge by a phase of ​π ​/2. Let us go ahead and verify this                    

by plotting over here.  
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So, here is my plot of Q(t)/Q​0 and I(t)/(Q​0​ω​). In order to do the plotting I need to                  

non-dimensionalize and the way I do non-dimensionalization is I divide Q(t)/Q​0​. So, Cos(​ωt)             

is a dimensionless function Q(t)/Q​0​, Q has dimension of charge, Q​0 is of dimensions of               

charge. So, Qt(t)/Q​0 is dimensionless. So, what I am plotting on the Y axis over here is                 

Q(t)/Q​0​.  

Similarly, for the charge, for the current I am plotting I/(Q​0​ω) because Q​0​ω ​has dimensions                

of current. Q​0 is the natural scale for the charge present in the problem. ​ω is the natural scale                   

or ​ω = 1/ is the natural scale for inverse of time present in the problem. So, natural                  

scale for current in the problem becomes Q​0​ω ​. So, I divide the current by Q​0​ω, and that                 

leaves me with Cos(​ωt – π) ​. 

And that is what I am plotting over here, I am plotting over here, Cos(t) and Sin(t). And this                   

plot gives me I am using a minus sign over here. So, let me put that minus sign. Now, this is                     

correct, and I should put current is -Sin(t) plot that and there we go. So, what we see is that                    

the charge is given by the solid curve or the dimensionless. The charge on the capacitor and                 

dimensions unit Q(t)/Q​0​ is given by the solid curve and current is given by this dashed curve.  

We see that the charge is always leading the current that is charge peaks first and current                 

peaks later, current reaches this maximum after the charge. This is because first there is no                



current, the charge is maximum as the charge depletes to 0 that is when the current reaches                 

this maximum and so on. 

So, this is how by plotting the dimensionless quantities dimensionless current and            

dimensionless charge in the same plot we can find out that whether the current is leading or                 

the charge is leading and we can see the shape between the charge and the current. As a                  

homework exercise I want you to calculate and plot the energy in the Capacitor and energy in                 

the Inductor as a function of time. Remember, energy in the Capacitor is Q​2​/(2C) and energy                

in the Inductor is ½ LI​2​.  

Now, you know the charge in the current so you can work out what is the energy in the                   

Capacitor and energy in the Inductor and you can plot both of them on the same plot. What is                   

the average energy contained in the capacitor and the inductor per cycle or the oscillations are                

very very fast.  

So, you really cannot measure energy as a function of time but you will really see if you try                   

to make energy measurement you will see average energy per cycle, when the frequencies are               

very high, that is, when the frequencies are few Kilohertz, the oscillations are so fast that you                 

will not be able to measure the energy as a function of time but all you will see is average                    

energy. So, think about how to calculate the average energy in the capacitor and the inductor                

per cycle.  
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So, this was an example of a boundary value problem where we solved a particular, given                

particular boundary conditions on initial value conditions we found the solution for the             

charge and the current in LC Circuit. 


