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Damped Oscillator: Problems 

 

Welcome to this 4th module. So, in this module, we will try and do some Problems 

originating from the Damped Oscillator; so, a very quick review before we plunge the 

problems. 
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So, as usual we begin with the equations of motion, and they are here. And just to remind 

you   γ is the dissipation coefficient and s is the stiffness constant. And in general you can 

obtain solutions for this we spent last three modules doing that, and here is the general 

solution. And two other things that we will be needing are this  ω1 which is the frequency 

of the damped oscillator, and in fact this quantity here is the is  ω0
2  which is the natural 

frequency of the undamped oscillator. So, I can write this as   ω0
2 − γ2/(4m2) And we 

also learnt about the Q-factor or the Q value which is mω0/γ   . So, this is the approximate 

value which is valid for valid when the dissipation is small. So, with this background let 

us quickly get the first problem. 
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First problem is among the simplest. For a damped harmonic oscillator, we are given that   

ω0
2 − ω1

2 is equal to this value,  10−6  ω0
2 . We need to find the Q-factor. So, all we need 

is the formula that is given here. And we just take rearrange this equation,   ω0
2 − ω1

2will 

be equal to γ2/(4m2). And we are told that this quantity here is simply equal to  10−6ω0
2  

that is   γ2/(4m2). 

So, if i bring  ω0
2  down here, I will have   γ2/(4m2ω0

2)  is equal to 10−6. Therefore, the 

quantity I have here is 1 over 4, and this is simply   q2 in the denominator. Therefore,   q2 

will be equal to  (1/4)10−6 which is equal to 106/4. So, Q-factor is  103/4 that is  

1000 / 4 equal to 250. And remember that Q is dimensionless quantity. So, it is a ratio of 

two energies, hence it has no dimensions or no units. 
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In the second problem the question is amplitude of a damped oscillator decreases by 5 

percent during each oscillatory cycle find the percentage of mechanical energy of the 

oscillator that is lost in each cycle. So, remember that energy is simply square of the 

amplitude for our purposes. To do this problem what we need is the ratio of the amplitudes  

A0/A1is  eδ. So, hope you remember the definition of   δ that we had which was γτ′/ 2m, 

where  τ′is the time period of the damped oscillator. 

Now,  A0 is the initial amplitude of the damped oscillator. And the statement here says that 

after one period it decreases by 5 percent in which case  A1will simply be equal to  0.95A0 

and that is equal to  eδ. So,  A0 and  A0 will cancel out, and I will get e−δ = 0.95. So, if 

we take logarithm on both sides, we will get   δ to be equal to 0.051. You can do this 

calculation yourself with the calculator and check that this is the value of   δ. 

Now, we know what is the value of   δ which means that we know that this is equal to 

0.051, you also know that τ′ = 2π/ω1. And as usual we are going to assume that the 

damping is sufficiently small so, that this is approximately equal to 2π/ω0. So, now, if I 

substitute this in the value of   δ, I will get   δ = (γ/2m)2π/ω0, 2 and 2 will cancel out, I 

will get πγ/mω0. So, this tells me that   δ here is equal to π/ Q. So, if you remember  

mω0/γis the Q-factor. 

From this I can rewrite this equation as q =  π/  δ. We know that Q is equal to energy 

stored by the energy lost in one cycle. So, what we are interested in is this energy lost per 



 

 

cycle and this is equal to    π/  δ. So, let me say that energy stored initially is  E0 and 

energy lost is some fraction of it which I will call qE0. So, with this in place all I need to 

do is to plug in these two in this equation both  E0 and q times E0. 

If I do that, I am going to get the following. This will imply that again  E0and  E0will 

cancel out, and it tells me that  q is equal to   δ/π If I substitute the value for   δ I can find 

out the value of q. So,   δ is 0.051 / π is approximately 3.141. So, this will give me a 

number which is 0.0081. So, this implies that about 0.8 percent of the energy is lost per 

cycle. So, that is the answer to this question. 
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So, in the third problem the question is show that the fractional change in natural frequency 

which is stiffness constant divided by mass for a damped simple harmonic oscillator is 

approximately equal to 1/q2. So, the starting point to solve this problem is we should be 

able to relate the frequency of the damped oscillator to the frequency of the undamped 

oscillator. So, from here we just need to do some few simple manipulations. Starting point 

for this is the formula which we had seen before. So, we will just slightly rearrange this 

equation. And if I take square root, I will get  ω/ω0 is    ((1 − γ2/(4m2 ω2))
1/2

. 

So, here is where we will do a binomial approximation. And if I do the binomial 

approximation, I will get 1 − γ2/(8m2ω0
2). So, note that if x is small for a function like 

this, binomial approximation would mean that 1 +  q x. So, this is the case when you 



 

 

terminate the binomial approximation at the end of the first term, which is exactly what I 

have done here. And from here we recognize that  mω0/γ is  q, and we can take one on 

the other side. If we do all that, we should be able to get (ω1 − ω0)/ω0 = −(1/8)q2. 

Notice that Q is equal to mω0/γ  . 

And now with the slight rearrangement  (ω0 − ω1)/ω0 which is the fractional change in 

the natural frequency would be equal to1/(8𝑞2). So, this is the answer that is required. 

And the approximation here is was done here applying binomial approximation.  
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Let us start with the next problem in this case a mass is subjected to a dissipative force 

equal to − γv, where  v is the velocity, but it does not have a restoring force term in other 

words it does not have a  sx term. So, we need to solve this equation, and find the 

displacement as a function of time. So, let us do this. So, normally this is your equation of 

motion for the damped oscillator. However, in this case, we are told that this term does not 

exist. So, the effectively the equation is m�̈� + γẋ = 0. And we need to find solutions which 

means I need to find x (t) that is the question. 

So, the method of solution is same technique as the one that we adopted for solving the 

dissipative harmonic oscillator. So, let us assume solution x (t) to be  A which is a constant 

eαt, and we will determine this  α in a while  ẋ(t) would be Aαeαt;    ẍ(t)would be Aα2eαt. 



 

 

Now, we need to simply substitute these things back in this equation. If I do that, I will 

have mAα2eαt + γAαeαt = 0, and take   eαtoutside. For this equation to hold identically 

and   eαtis not 0 for arbitrary values of  α and t. Hence the condition is that this quantity is 

equal to zero. And you see that there is a in both the terms of this equation which can also 

be removed. So, I will have mα2 + γα = 0. And I can for example, divide throughout by  

m in which case it will be, so I take  α out I will have α +  γ/ m =  0. So, the solutions 

are easy either  α = 0 or α =  −γ/ m. So, these are the two possible values of α. 
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I can now plug this back the equation, the equation that I assume Aeαt. If I take  α to be 

equal to 0,  x(t) would be equal to A, which is a constant. On the other hand, if α =  −γ/ m, 

x (t)would be  Ae−(γ/m)t. So, these are two linearly independent equations. These are two 

linearly independent solutions. You cannot obtain one from the other just by multiplying 

a constant. So, there is one constant which is A, which is already there in this equation. 

So, the general solution for displacement as a function of time would be  e power this one, 

because we were solving a second order differential equation which is this. We should 

have two independent constants and that is satisfied by this form of the solution. If we had 

some initial conditions, we can plug in that initial condition and reduce one of the 

constants. For instance, let us say that I know that  ẋ(0) velocity at time 0 is equal to some 

v0. So, in that case, one of the constants can be eliminated as follows. I need to find first  

ẋ(t)from here  ẋ(t) would be B– (γ/m)e−(γ/m)t. 



 

 

And if I put ẋ(0), so if I put  t equal to 0, I would get B(−γ/m) = v0. And this implies 

that the constant B = −mv0/γ  . Hence my solution would be A– (mv0/γ)e−(γ/m)t. So, 

this is a solution which incorporates one of the initial conditions which is this. So, still we 

are left with one more constant which is  A here, and that can be determined provided we 

have one more initial condition. So, this is a sort of general technique that you could follow 

for any problem. In general when you have two such constants, you need two independent 

conditions to determine them. 

And if you think about this problem a little more physically then as a mathematical 

problem, it tells you that the restoring force term is not that which means that you are not 

going to have oscillations in the first place. And when you look at the solutions that we 

have obtained either this or this, they are not oscillatory solutions. So, this is an 

exponentially decaying solution so is this an exponentially decaying solution. So, in the 

absence of restoring force term, you are not going to get oscillations, and the solutions 

pretty much tally with that expectation. 
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The last problem for this module is here. So, in this case, we have the equation of damped 

oscillator given to us which is ÿ + 2ẏ + 10y = 0; and two initial conditions are given. We 

simply need to write down the explicit solution. Let us start from the equation of motion 

for the damped oscillator mÿ + γẏ + sy = 0, and I will divide throughout by m, so that I 



 

 

can make it similar to the equation that is given here. So, it will be  ̈y + (γ/ m)  ̇y +

 s/m = 0. 

Now, when you look at this form of the equation and this equation given here, they are 

exactly identical provided we make the correspondence that γ/ m =  2, and  s/m = 10So, 

before we find the solution, we need to find out in which regime we are. Are we in the 

heavy damping regime or in the critical damping regime, or are we in the damped 

oscillating regime, and that will be determined by these set of parameters. 

The quantity of interest there is let me call it   δ, it will be   γ2/(4m2) − s/m. So, if I 

substitute the numbers here,  γ/ m is 2. So, this would be 4 by 4,  1 − s/m is 10, so that 

is minus 9. Therefore, the quantity   δ < 0; hence we should expect to see oscillatory 

solutions. So, it would be an oscillating solution which will be damped. So, purely from 

the parameters of the problem, you could determine whether you are in the regime of heavy 

damping, critical damping or damped oscillations. So, here we are in the regime of damped 

oscillations. The next step is to write the solutions. 
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Since we are in the oscillatory regime or damped oscillatory regime, the solution that is 

going to be relevant for us is given here. And you will see that it has two paths to it with 

two constants  C1 and C2. Now, we can plug in the numbers from the parameters of the 

problem. And if I do that I should be able to write my solution as follows. Once I have 

written down the solution for y, I can also write the solution for ẏ. I have an expression for  



 

 

y(t) and  ẏ(t) and we also have two initial conditions which is y(0) = 4, and  ẏ(0)  =

−4 . I just need to plug these things back in these two solutions;  y(0) will be equal to 

C1 + C2. And according to the first initial condition it is equal to 4 so that follows from 

here. 

And  ẏ(0) if I put in  t equal to 0 in this equation, I have this expression for ẏ(0), and 

according to this initial condition this is equal to minus 4. So, this straightaway gives you 

that C1 + C2 = 4. Whereas, this second condition on  ẏ(0) gives you complex number, 

and whereas the initial condition says that it has to be a real number, it has to be equal to 

minus 4. So, this would then we can equate the real parts and imaginary parts, hence it 

would give me minus C1 + C2 = −4, which is same as the condition that we had gotten 

earlier. 

And the second one which is 3i(C1 − C2) = 0, because there is no imaginary part in the 

initial condition that is given. So, this would imply that  C1 is equal to C2. And so we just 

need to put let us say that  C1 is equal to C2, and it is simply equal to  C in which case this 

would become 2,  C =  4 or C =  2. Hence the constants are C1 = C2 = C, which is equal 

to 2. So, we have determined these constants. Now, all that remains is to write the solution 

explicitly. 
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So, this is the explicit solution we wrote down earlier for displacement as a function of 

time. The undetermined constants are  C1 and C2. And we now know that its equal to both 



 

 

are equal to 2, hence our explicit solution will be   y(t) = e−t(2e3it + 2e−3it). Now, you 

can simplify it a little more, you can take 2 outside and get 2e−t. And this suggests that 

multiply and divide by 2, then the quantity here is a cos function, hence we can write a 

very compact result like this  y(t) would be equal to 4e−t cos 3 t. This would be the final 

result in its compact form. So, you will notice that this has the dissipative part and the 

oscillatory part as we expected based on the parameters that was given for this problem. 

So, with these five problems, I will close this session. But I encourage you to try out the 

problems that is given in the assignment. 


