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Welcome back. We were looking at the Damped Oscillator. In this module also, we will 

continue to do so. In particular, we are going to look at how do we characterize the damped 

oscillator.  
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But before we do that let us quickly do a recap of what we did in the last module. If you 

remember we wrote down the equation of motion for a damped oscillator and I have this 

here, this is the equation of motion. And the important terms to notice are the term that 

involves the dissipation coefficient  γ here and of course, this is the term that gives us 

oscillations in the first place. 

So, we have a dissipative oscillator and we also solved this equation of motion and the 

general solution for this equation of motion is given here. So, it is displacement as a 

function of time. And once again I would like to draw your attention to the fact that you 

what we have written down here is a combination of two linearly independent solution. 

So, this is one linearly independent solution and the other one is this,  C1and  C2 are 

arbitrary constants in general. 



Now, this general solution will reduce to various possibilities and to what it will reduce to 

depends on this quantity here, inside the square root. So, depending on whether this 

quantity is either positive or negative or 0, we are going to get different kinds of dynamics 

for the damped pendulum. 
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Let us quickly see each on them. So, we saw that in the last module when  γ2  is,  γ2/4m2 >

s/m this is what we called as case 1. So, this is the case where dissipation is dominant 

compared to the restoring force or the stiffness coefficient. 

So, in this case we saw that you could write the solution in the following manner. So,  x(t) 

would be let us say some constant,  e−pt and sinh q t. To get this particular form of the 

solution we had put in this initial condition that displacement at 0 =0. I am plotting 

displacement as a function of time. So, we might get some solution that might look like 

this for instance. So, this is time here on the  x axis. So, this is the case where there is no 

oscillation. You just give a push to the system, a system which is experiencing huge 

amount of dissipative force. It just comes back to the equilibrium position, no further 

movement is possible. 
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So, let us go to the parametric regime that we called case 2, just in the earlier module. So, 

in this case there is a precise balance between the dissipation represented by γ2/4m2  and 

the restoring force like coefficient or the stiffness coefficient that is s/m. In this case we 

were writing the solution as  e−pt and C +  Dt. And just to remind you we use this  p to 

mean γ/2m. 

So, again this is a case where no oscillations are possible. We can quickly sketch the 

solution. Displacement as a function of time would again go something like this, ok. And 

this is the time at which t max, at which the maximum displacement happens. And I had 

left it as an exercise for you to find out the maximum displacement. So, here again the 

central result is that no oscillations are possible. 
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Then we looked at what we called case 3. In this case dissipation is lesser, so  γ2/4m2 

smaller than stiffness coefficient divided by the mass. In this case, if you notice the term 

inside this would be negative, in which case  q would be complex number. So, again you 

can write down the solution in this case. One possible solution that we wrote down was to 

say that x(t)  would be some  C times  e−ptsi n(ω′t + ϕ) in general. So, this is a possible 

solution for this choice of parametric regime, and ω′  is the angular frequency of the 

damped oscillator, so that would be simply equal to  2π/τ′. 

So, you can see that this is an oscillatory part; there is an oscillatory part to the solution 

which is modulated by the exponentially decaying part. So, I can sketch the solution here. 

So, I am going to have the oscillatory part doing this, whereas, the exponentially decaying 

part would go like this. So, this would correspond to e−pt. So, just to remind ourselves 

p =  γ/ 2 m. 

And it is also important to realize that, you can think of this solution as  x(t) being equal 

to some amplitude which is time dependent times sin(ω′t + ϕ). So, this A(t) = Ce−pt. 

So, when you look at the solution in this form it looks very similar to the solution that we 

had obtained for the standard undamped oscillator, except that in this case the amplitude 

is time dependent and as we can see the amplitude keeps decreasing as a function of time. 
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With this background having obtained the solutions for the damped oscillator let us see 

how we can characterize the damped oscillator. In particular we will be introducing the 

idea of  q values. 

In this part we will be primarily interested in the case when  q = 0 which implies that  

γ2/4m2 < s/m or more physically the dissipation is somewhat light, it is not the case of 

a heavy dissipation. 

Now, in this case let us start off with one solution. So, let me say that this is a possible 

solution. Now, if I try to sketch this solution it might look like this. So, again this is a cos 

function. So, it should probably go like this and it is modulated by this exponentially 

decaying function which probably goes like this, something like this. Here we can identify 

a few things. For instance starting from here; so, this is time t equal to 0, and from here to 

here would correspond to one time period, so that can be called as  2π/ω1 and from here 

to of course, here would correspond to two time periods 

So, again this is also equal to 2π/ω1, from 0 to this point would be twice the time period 

and so on. In fact, the value here for instance, the value of the displacement here would 

simply be equal to  e−γ/2m the value of time period which we shall call τ1. And here of 

course, it will be at this point it will be the same thing  e−γ/2mmultiplied to  τ2 and so on. 



What is important for us is how the amplitude is decreasing, otherwise the factor here is 

simply an oscillatory function, just like as it was in the case of a undamped oscillator. So, 

mostly we are going to be worried about how the amplitude is changing as a function of 

time. Let me give it a name  A0 here to be consistent with the notation that is going to 

come. So, I could say that  A1 = A0e(−γ/2m)τ1and similarly I can write an expression for 

A2. So,  A1would be this amplitude and A2 would be of course, this amplitude  A2would 

be  A0e(−γ/2m)2τ1. 

So, following this one can see the pattern you can directly write what happens at the nth 

step or the nth amplitude. So, that would simply be equal to   A0e(−γ/2m)nτ1.  
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 (γ/2m)τ1, I will call it  δ. In which case the last equation that I wrote down would be  

An = A0e−nδ. And this would imply that  An/A0 = e−nδ. This quantity δ is something 

that characterizes the damped oscillator. So, I can extract this value by taking log on both 

sides. This would simply be equal to  − n δ.  

And if you are doing and experiment where we track the displacement as a function of 

time, all one needs to do is to get the amplitude at every time period and take the ratio for 

different value of n. In which case, if we plot  log (An/A0) as a function of  nwe should 

get a straight line with slope  − δ. So, that is one way of characterizing damping in an 



oscillator. In this larger the value of δ  the stronger is the damping, in which case the decay 

of the oscillation is going to be much faster. 
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Another way to characterize a damping is through the notion of relaxation time. In other 

words relaxation is basically the approach towards the equilibrium position for a 

oscillating system which has been disturbed away from its equilibrium position. In fact, if 

you see the figure here where I have plotted the displacement as a function of time that is 

exactly what is happening. You displaced the oscillator a little bit at initial time and slowly 

the oscillator is damping and finally, would reach the equilibrium position corresponding 

to x =  0.  

So, we would like to characterize it through relaxation time. Again it is going to involve 

only the amplitude part. So, I can write the amplitude as A0e(−γ/2m)t. We could ask at 

what time the amplitude fall to  1/e of its value at initial time. The amplitude at initial time 

is this, at time  t = 0 So, the question is when does it become  A0e−1 So, that is possible 

when (γ/2m)t = 1. This implies that this time scale  t which I will call as tr, to mean that 

its relaxation time would be equal to 2 m/γ. So, this time scale is called the relaxation 

time. So, this is another characteristic of a damped system. 

And there is entirely another way of characterizing the damped oscillator in terms of 

energies. So, if you notice in the last two cases, we were looking at how the amplitude was 

decaying as a function of time and we essentially characterized the decay of the amplitude 



of the oscillation both when we defined a δ  and when we defined this relaxation time. So, 

next we will go over to characterizing the damping of an oscillator in terms of energy 

decay. 
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We will now see the notion of Q value for an oscillator. And again the starting point is the 

amplitude as a function of time. If you remember from our earlier treatment of undamped 

oscillator, at the end of the module I had said that energy is proportional to square of the 

amplitude and now we will have this occasion to use this idea. So, to define how energy 

is going to decay all we need to do is to say that energy as a function of time is equal to 

square of the amplitude which would be A0
2 e(−γ/m)t. And this quantity here which is A0

2   I 

could re-designate it as E0  to mean energy at time  t = 0or the initial energy. 

Therefore, energy as a function of time would look like E(t) = E0e(−γ/m)t. We now ask 

the question, given that we are putting in energy equal to E0 the oscillator at time  t = 0 

So, we are giving it some energy. When does that energy become E0e−1? So, this will 

happen when  t = m/γ, similar to what we worked out for the case of relaxation time. 

Now, in the time that the oscillator, oscillators energy reduced from  E0 to E0e−1, the 

oscillator itself would have moved over certain radians, would have oscillated over certain 

radians. How much would it have oscillated? Let us compute that. 

What we know is if  T is the time period of the oscillator, in one full time period the 

oscillator would have oscillated through   2π radians. On the other hand if my time scale 



is  T which is equal to m/γ, by what radians would it have oscillated? And that would 

simply be equal to  2π(m/γ)/T and this can be rewritten as  T is  2 π/ω therefore, this 

will be m ω/γ. In time  T which is equal to m/γ, the oscillator would have; oscillated 

through  m ω/γ radians, so my answer to this question is that it is equal to   mω1/γ  

radians, since  ω1 is the angular frequency of the damped oscillator. Now, this is the 

quantity that we call the Q value.  

And we will see the physical meaning of it shortly, but before that we will make it a little 

more robust. So, the Q value is dependent on  ω1 which is the angular frequency of the 

damped oscillator. 
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We remember from our earlier definition of  ω1 this is what it is which is given here. Now, 

when we consider the case of  γ much less than 1 or when dissipation is really small then 

we could say that  ω1 is approximately equal to  ω0 . In such a case, I could define my Q 

factor or Q value to be  mω0/γ. This will be our definition of Q value, Q value of oscillator. 

To get some physical field for this Q value, let us go back to the equation that we had 

written down earlier.  



(Refer Slide Time: 22:07) 

 

That E(t) = E0e(−γ/m)t. So, now, let us ask the question how much of energy is lost in 

one cycle of oscillation. After all it is a damped oscillator, so energy is being dissipated 

out. Energy that is lost I will represent by δE and  δE would be from basic calculus 

(dE/dt)δt. As time increases energy is lost or energy decreases, so I need to put a negative 

sign here.  –  δE will then be equal to dE/dt, I can easily calculate starting from here. If I 

do that I will get  E0e(−γ/m)tmultiplied by (−γ/m)δt.  

And this  E0e(−γ/m)tis simply equal to  E itself. So, what I have is δE = E(−γ/m)δt, and 

negative and negative will cancel and I will take  δ E/E to be equal to δ t. Now, this  δt 

could be the time period of your damped oscillator. In which case  δt would simply be 

equal to 2π/ω1, and if I plug in all these I will have  δ E/E is equal to, I have missed out  

γ/ m here, (2π/ω1)γ/m. And we will use the approximation that  γis really small in which 

case   ω1 = ω approximately, so I will have  2π(γ/m)ω0 . 

And let me write this equation other way around in terms of E/δE. If I do that, if I do that  

E/δEwill be equal to  (1/2π)mω0/ γ and you will notice that this  mω0/ γ is precisely 

the definition of Q factor, and I can replace this into Q. In other words, to write it in words 

it is the energy stored in the oscillator divided by the energy lost per cycle of the oscillator 

and that is simply equal to Q/2 π. This gives us a physical prospective of the Q factor for 

a oscillator. So, it is the ratio of the energy stored in the oscillator at some initial time 

divided by the energy lost per cycle. So, clearly larger the Q value, the oscillator is able to 



sustain the energy that is given to it for a very long time. Smaller the Q value it is going to 

dissipate energy very quickly, and any energy that you give it to it is going to be lost very 

soon.  

So, in some sense it is a measure of how well the oscillator is able to efficiently spend the 

energy given to it. And at this point we should note that Q factor being the ratio of energy 

and another energy, Q is really a dimensionless quantity.  
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Finally, let us ask how is energy changing as a function of time. So, I will start from the 

expression for energy of the oscillator which is (1/2)sx2 + (1/2)mv2. Should remember 

that both  x and  v the displacement and velocity are both functions of time. Let me write 

it as   (1/2)sx2 + (1/2)mẋ2. Let us compute  dE/dtfor this case, remembering that both  

x and  ẋ are functions of time I will get  sxẋ + mẋẍ 

If I take  ẋ common I will get mẍ + sx ; now, at this point let us write down our standard 

equations of motion. This is for the undamped oscillator. So, this is for the damped 

oscillator. Now, let us substitute for this quantity here inside the square brackets. So, if I 

substitute the value from here, from the case of undamped oscillator this is identically 

equal to 0. So, all that it tells me is that for undamped oscillator  dE/dt = 0 that comes 

from this equation. So, you put it in here in this equation you are going to get 0 identically 

all the time. So, that is just another way of saying that energy is a constant or energy is 

conserved.  



And this is the idea that we already emphasized in the last week. But now if you come to 

the damped oscillator you substitute for this quantity  mẍ + sx from here. So, that would 

give me that  dE/dt = ẋ into, and if I substitute for this I will get - γẋ. So, that is  −γẋ2. 

So, in this case in general this is not equal to 0 So, the rate of change of energy with respect 

to time is actually negative and in general it is not equal to 0, so which means energy is 

not conserved and of course, energy is lost, this is something that we saw throughout this 

module.  

With this we will conclude this module. And in the next module we will look at some 

problems related to the Damped Oscillator. 


