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Welcome back, we are still looking at the Damped Oscillator the last class the last 

module we derived this equation corresponding to the damped oscillator. So, just to 

recall once again the terms here are the one corresponding to dissipation, here is the 

dissipation coefficient this here. 

And this 𝑠 multiplied by 𝑥 that is the term corresponding to restoring force and 𝑠 is the 

stiffness constant. And we need this restoring force because without that you are not 

going to get oscillation in the first place and we motivated ourselves by saying that to get 

more realistic we need to add dissipation to the system and that corresponds to the 

second term. 

So, our model of dissipation here is that the dissipation coefficient multiplied to velocity 

would be the dissipative force. Another way of saying that is, is that the dissipative force 

is proportional to velocity. From all these considerations you obtain this equation which 

is right in front of you here. 
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And now in this module we will try and obtain solutions for this equation. In fact, in the 

last module we had already obtained solution for this equation and I have written it down 

here. And you will notice that there are these two constants C1and C2 just as it happened 

in the case of the undamped oscillator.  

The standard oscillator both these constants would be determined from the initial 

conditions and we will worry about it when we do a particular problem. And then there is 

a first term which essentially corresponds to dissipation simply because the dissipation 

coefficient 𝛾 is right there in this term and this is the term which we are going to now 

analyze this and this. So, what happens to this term would depend on what happens to 

this quantity inside the square root?  
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So, to do any further analysis let us simplify this equation a little bit simplify in the sense 

of notational simplification. So, I am going to call this quantity 𝛾/2𝑚 as  𝑝 and this 

quantity here under the square root. In fact, the entire quantity along with the square root 

I would like to call it as 𝑞 . So, it is just a change of notation and when I do this and 

substituted back in the equation this is the equation that I get. 

So in fact, I can slightly simplify it little more by saying that   𝑥(t) = e−pt[C1eqt +

C2e−qt]. So, we are going to work with this equation and in particular we are going to be 

worried about this quantity 𝑞. Since it is under the square root we would like to know 

what are the various possible dynamical behavior that the or damped oscillator can 

display for various possibilities of 𝑞. 
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Now, let us begin with the case one which implies that it is  γ2/4m2 − 𝑠/𝑚 is greater 

than 0 or you could say that it is dominated by dissipation simply because  γ2 term is 

greater than the stiffness coefficient. In this case I can write the solutions I can copy the 

solutions back again so  𝑥(t) would correspond to  e−𝑝𝑡 then I have C1eqt + C2e−qt 

So, in principal this should be the solution that we want, but we want to get it in a form 

that is that is a little more clearer for us to understand what is going on. Ideally I would 

like if my solution look something like this some  𝐴 𝑠𝑖𝑛 𝜔t maybe   ω̃𝑡 + 𝜙 because this 

is very clear us to what is happening ok. 

So, let us try and write this solution something that would look like this so that is the 

next few steps of our work. To do that we have these two constants  C1and  C2 to make it 

easier, I am going to replace those two constants  C1 and  C2 by two other constants  

D1and D2. So, I have that freedom to do that the way I would do that is to define new 

constants  D1 as  C1 + C2 and  D2 is C1 − C2. 

So, with these redefinitions so I am basically going to replace two constants  C1 and  C2 

by two new constants  D1 and  D2 and now let me write  C1 and  C2 in terms of  D1 and 

D2. So, it is a question of two constants basically two unknowns which I need to 

determine. So, I can write  C1 as  (𝐷1 + D2)/2  and  C2 would be  (𝐷1 − D2)/2. 



So, the next step is substitute these two quantities here this and this here. So, substitute 

this in  C2 and substitute this in  C1 and if I do that, I am going to get my equation that 

might look like this. So, the next step is simply collect  D1 terms and  D2 terms 

separately and then we will see how now in the new form, it will get to become much 

simpler. 
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Let us now separate the  D1 and  D2 terms in which case  𝑥(t) would become like this. 

Now the next step is to recognize that this function that I have written down here is 

nothing, but a sin hyperbolic function or explain this case it is the cos hyperbolic 

function. Similarly this function that I have written down here is sin hyperbolic function. 

So, it is sinh q 𝑡.So, you plug in these things back in the equation I get. So, this might 

look like it is a sort of good enough for us, but let us go one step further and make it a 

little more simpler but to be able to do that I will have to assume some initial condition. 

So, let me assume that at 𝑡 =  0, 𝑥 =  0. So, if I plug in this initial condition in this 

equation it will give me the following  cosh q 𝑡 will give me 1; whereas,  sinh q 𝑡 would 

be 0 at 𝑡 = 0. 

So, in which case this simply tells me that D1 = 0, so by assuming one initial condition 

what we have achieved is to set one of the constants to 0, so that is the outcome. So, we 

will still be left with another constant to be able to determine that we still need one more 

initial condition, but for what we are doing we can still go ahead and write the solution 



without having to determine the second constant. With  D1 being equal to 0 let me write 

the solution. 

(Refer Slide Time: 09:58) 

 

So, in this form our solution looks sufficiently simple enough that we can actually sketch 

the solution and see the behavior. So, it is a combination or actually the product of two 

possible functions; one is this exponential function as a function of time this quantity is 

going to decay exponentially. Let us remind ourselves that 𝑝 is dependent on  𝛾 and 𝑚, 

but both are positive. 

So, 𝑝 is a quantity that is greater than 0. So, this guarantees us that this function is 

exponentially decaying function and similarly this function sin hyperbolic function is an 

monotonically increasing function. And we also know that in fact, one of our conditions 

was that q is greater than 0. 

Now, what we have is a product of these two functions one which is exponentially 

decaying other one which is increasing quite fast. And when I try to sketch the product of 

these two functions, I will get the displacement for a damped system and that could look 

something like this.  

Let us say that this is a curve that corresponds to value γ1; where  γ1 is one of the 

possible values for the dissipation coefficient. And let me also for clarity plot one more 

curve something like this and let us say that this corresponds to  γ2 and this  γ1 and  γ2 



both of them are two different possible values of dissipation coefficients. They are such 

that  γ1 > γ2 ok. And physically what does it say? It tells me that if I keep increasing the 

dissipation coefficient or if I put an oscillator in a in a viscous medium and the viscosity 

is actually larger and getting larger and larger in which case the maximum displacement 

that you will get. 

So, the maximum displacement corresponds to this value here, the maximum 

displacement would keep decreasing ok, which make sense simply because if the 

medium is more and more viscous you would not expect the oscillator to be displaced by 

a huge amount. 

So, in that sense physically it does tally with our intuition of what is expected to happen 

when an oscillator is in a dissipative medium. Finally, we should also worry about what 

the solution itself is telling us that is  γ2/4m2 was greater than  𝑠/𝑚 again to remind 

ourselves. So, the dissipation dominates over the stiffness coefficient. 

So, in such a case the solution that you have written down and the one that you have 

sketched basically tells us that they are cannot be oscillations. So, if you remember the 

basic equation of motion for a standard oscillator gives you either a sin or a cosine 

function or a combination of the sin and cosine functions. 

In either of these cases what you physically see is an oscillating solution. Here in the 

presence of dissipation at least in one possible case where this condition is satisfied you 

can have a situation where no oscillation is possible. So, for instance physically if you try 

and let us a have an oscillator set up in a highly viscous medium and you give it a push 

the only thing that would happen is that the system would simply come back to the 

equilibrium position which is what this graph is telling us. 
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With this now let us go to the second case let us start again from the original solution 

that we wrote down here. So, I have it in front of me here so, I am going to put 𝑞 = 0. 

So, if I do that this equation simplifies quite a bit. So, x(t)would simply become  

C1e−pt + C2e−pt which would simply correspond to saying that it is  (C1 + C2)e−pt and  

C1 is a constant and  C2 is also a constant. 

So, sum of two constants is another constant, so I do not need to maintain two different 

names for a single constant. So, I will just call it 𝐶e−pt. The earlier cases that we worked 

out we always had two solutions and  C1and  C2 were constants corresponding to each 

one of these solutions. 

So, for instance the general solution for the damped oscillator had this two parts. So, 

there is this first part which if you would like you could have called it as  x1(t) and there 

is the second part which you could have called it as x2(t). So, these are two linearly 

independent solutions. 

So, if you remember from the first module on oscillator we kept saying that since the 

equation of motion is a second order ordinary differential equation you should have two 

linearly independent solutions and for the damped oscillator it is still a second order 

ordinary differential equation. So, this is a second order differential equation so this has 

two linearly independent terms such that you could say that the general solution is 

simply sum of these two linearly independent solutions. 



And we found that when you analyzed the case of let say the case of  𝑞 >  0           

corresponding to this first case. So, here again we had two different linearly independent 

combinations as solutions and it is our choice of putting a particular initial condition here 

which reduced it to one particular solution which is this. 

Now, here if you look at what we have done we seem to have only one solution whereas, 

again we are still looking at solutions of second order differential equation. So, ideally 

there should have been second solution as well. So, let me first start by calling this as  𝑥1. 

So, there are from the theory of differential equations there are ways of getting the 

second solution given one solution here I already know one solution which is right in 

front of you here   𝐶e−pt and using this I can get the second solution. 

So, that is a mathematical way of doing it and if you go back to any basic books on 

differential equations you can in fact, the book will tell you how to do that. So, I am not 

going to do that here on the other hand we can once again guess a second solution. 

So, there has to be some basis for guessing a second solution the basis is that we already 

know that the two solutions that we get should be linearly independent. So, which means 

that I have one solution here and now my aim is to write the second solution and the 

condition on the second solution is that it should be linearly independent from the first. 

In other words  𝑥2(𝑡)should not be some constant times 𝑥1(𝑡). 

So, I cannot just multiply it by 𝑥 multiply  𝑥1 by another constant. So, what is the 

simplest thing I can do such that  𝑥2will be linearly independent of 𝑥1? The simplest 

thing I can do is to simply multiply by 𝑡. So, simply multiply  𝑥1(𝑡) by 𝑡. 

So, if I do that this is what I get, but in general I can put in a different constant here and 

let me call it 𝐷. Now I can write down the general solutions  𝑥(𝑡) = 𝑥1(𝑡) + 𝑥2(𝑡) 

which will be  𝐶𝑒−𝑝𝑡 + 𝐷𝑡𝑒−𝑝𝑡which will be (𝐶 + 𝐷𝑡)𝑒−𝑝𝑡. 

So, I have my solution and in fact, you could go back and verify that the second solution 

which we basically simply guessed by saying that we will make the simplest of change, 

or multiply a simplest simple function to  x1(t) and manufacture a second solution which 

is what I have done. But you could always substitute this back in the equation and verify 

that this indeed is possible solution, I urge you to do that yourself I will not spend time 

on that here. 



So, my complete solution is and now I have two unknowns which is  𝐶 and  𝐷 both of 

which are constants which have to be determined from initial conditions. And again it 

tallies with what we have been saying right from first that if you are dealing with 

solutions of second order ordinary differential equations there is bound to be two 

constants which need to be determined from initial conditions. 
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Now, to understand what is happening let us again sketch this solution and this is so 

much simple as a solution to sketch. Because the  𝑡 dependence comes from these two 

terms this and this one of them is exponentially decaying very fast and this other one 

which is  𝐷𝑡 is only linearly increasing. So, clearly it is somewhat easier to handle. 

So, the displacement as a function of time could look something like this and you can 

also determine the time at which the displacement is maximum which is this. And let us 

call it   tmax and I urge you to verify that tmax = 2𝑚/𝛾. And using the value  tmaxyou 

can also find out what is the value of largest displacement which would correspond to 

this value here. And if you call it  𝑥𝑚𝑎𝑥you can find that value as well and again I leave 

it as an exercise for you to determine the value of xmax. 

So, all this you can do from the condition that at this point 𝑑𝑥/𝑑𝑡 =  0. So, again this is 

the second case which is often called the case of 𝑞 = 0, but it goes by the name of what 

is called critical damping. So, in this case again there is no oscillation, so we already saw 



one case of the first case which was 𝑞 > 0, there was no oscillations in that case and 

again in this particular case of  𝑞 = 0 the system is completely damped. 

So, you give it a push to a system or an oscillator that is inside a viscous medium the 

oscillator is simply going to come back to the equilibrium position without showing any 

oscillations. Now let us look at the case of 𝑞 < 0. So, I we have the general solution in 

front of us this one and now when 𝑞 < 0, the quantity in inside the square root becomes 

negative. So, which means that this is the case since  𝑞 < 0. So, this is the case of  𝑠/𝑚 

being greater than γ2/4m2. So, in this case restoring force or the stiffness coefficient 

dominates over the dissipation coefficient. So, you can imagine this to be a case of 

weaker a dissipation. So, the I can rewrite this quantity in the under the square root 

differently. 

So, let me start by doing that; I have this √𝛾2/4𝑚2– 𝑠/𝑚. Since  𝑠/𝑚 is greater than  

γ2/4m2 this would correspond to  √(−1) multiplied by √s/m − γ2/4m2 and root of -1 

is of course, our  𝑖 √s/m − γ2/4m2. 

Now, I will plug this in back in our general equation, in which case I would get 

something like this 𝑥(t) = e−pt[𝐶1e𝑖√s/m−γ2/4m2  t + 𝐶2e-𝑖√s/m−γ2/4m2  t] Now when I 

assembled the solution here this last equation, this pretty much looks like sum of two 

exponential solution and of course, there is an 𝑖. 

So, this does and is going to provide us oscillatory solutions in which case I can do the 

following. I can call this as I can call this by a different name let me call this as  ω1 both 

these quantities this will of course, allow us to simply it a bit. So, if I do that I will be 

able to rewrite the equation in a slightly simpler form from which we can easily 

understand what is going on.  
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Once I plug in this change of notation basically  ω1 this is what I am going to get and to 

be sort of consistent let me also say that  ω0 would be  𝑠/𝑚 or  ω0
2 would be  𝑠/𝑚 and  

ω1
2 would be 𝑠/𝑚 − γ2/4m2. 

So, this clearly tells us that  ω0 which is the angular frequency of the un damped 

oscillator is greater than  ω1 which is the angular frequency of the damped oscillator. 

Now to simplify it further I have these two constants  C1 and  C2 and this is the technique 

that we used earlier as well because we have freedom in choosing these two constants. I 

can take these two constant  C1 and  C2 and introduce two other constants. 

So, let me call  C1 to be  (𝐶/2𝑖)eiϕand let me call  C2 to be – (𝐶/2𝑖)e−iϕ. Now if I plug 

in these two choices that I have made for  C1and  C2back in the equation I am going to 

get the following with the little rearrangement it would look like this. This can be further 

simplified 𝐶e−ptei. 

Now, when you look at this equation it is very clear that, the term inside thesquare 

brackets is simply the sin function. So, this can be written as 𝑠𝑖𝑛(𝜔1𝑡 + 𝜙). So, just 

come from the basic trigonometry so now, I can easily write the solution for 

displacement as 𝐶e−pt𝑠𝑖𝑛(𝜔1𝑡 + 𝜙).So, that is remarkable the sense that for the case 

when q is less than 0; where the stiffness coefficient dominates over the dissipation 

coefficient. What we get is one term which is the sin term for instance is the oscillatory 

function whereas; this  e−pt is an exponentially decaying function. 
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So, now if you look at the solution that I have it has two constants one is  𝜙 and other is 

of course, the constant 𝐶. So, initially we had two constants  C1 and  C2 here this and this 

and they were now replaced by these two other constants which is  𝐶 and 𝜙. An 

oscillatory function like  sin(𝜔1t + ϕ) is being modulated by the exponentially decaying 

function which is e−pt. 

So, you should expect to get something like this sin function whose peaks something like 

this. So, the decaying profile here is   e−pt this distance in time from here to here we will 

defined for us one full time period until this point and that would correspond to let us call 

this time period T1. So, this would correspond to  2𝜋/ω1 and of course, this would then 

be 2 times that time period  2T1 and this would correspond to  3T1 and so on. 

So, when you look at the final solution you see something that seems to appeal to 

intuition you have an oscillatory solution which is modulated by and exponentially 

decaying profile. So, clearly the role of dissipation which is actually embedded here 

inside this exponentially decaying function because  𝑝 is 𝛾/ 2𝑚;  𝛾 is your dissipation 

coefficient leads to displacements which are decreasing as a function of time. In fact, 

when you do any experiment for instance you take a simple pendulum and let it oscillate. 

This is exactly what you see in the presence of air was a dissipative medium, 

successively the maximum displacement of the pendulum essentially keeps decreasing 

and finally, it stops. 



And this also tells us another point here that if  𝛾 =  0 which means that I do not have 

dissipation in the medium at all. So, any energy that I put in the system will remind there 

forever if that is the case then 𝑝 = 0. And then the solution would simply be equal to and 

if you remember that  𝛾 = 0 would imply that ω1 = ω0; this would simply reduce to 

𝐶 sin(𝜔0𝑡 + ϕ)  and this you would recognize is simply the solution for the standard 

harmonic oscillator without any dissipation.  

So, what we see is that in the presence of dissipation you do get oscillation at least in one 

of the possible cases whose amplitudes are successfully decreasing. And if you take the 

limit of no dissipation corresponding to  𝛾 = 0 you recover the solution corresponding to 

standard oscillator. So, I will stop this module with this and in the subsequent modules 

we will look at also including effects such as forcing and oscillator in other words you 

keep supplying energy to the oscillator so that will come later. 
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