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Welcome to the second module of this 12th week. We were looking at general questions 

about what would happen if you go beyond the linear regime. The motivation being that 

up until the 11th week everything that we did about waves and oscillations we stuck to 

the linear regime. In other words somewhere down the line the response has taken to be 

proportional to displacement or the restoring force is proportional to displacement and of 

course, there was a minus sign to take care of to ensure that there will be oscillations. 

So, we are looking at general questions about what does non-linearity do to the 

oscillations. So, in the first lecture this week what we studied was one of the simplest 

problems of that type, which is the simple pendulum. The only point is that you should 

not make the approximation that  is approximately equal to .  

So, then you go ahead and finally, look at the consequence of adding non-linearity to the 

system. The first thing that you see is that of course, the problem gets harder to solve, 

sin θ θ
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you cannot even solve it explicitly in terms of simple functions that we know like for 

example, it cant be written in terms of simple sin and cosine functions. 

So, the solutions are not that simple, they come out in terms of some more complicated 

functions. But somehow we were still able to obtain something useful to discuss for the 

time period of the pendulum. What we saw was that the time period depends on energy 

or equivalently the initial conditions are the amplitude.  

So, that is a signature of a non-linear system that time period is now dependent on the 

amplitude of the system or equivalently depends on the energy of the system and if you 

want to compare it, go back and look at the time period of a simple pendulum. It is 

independent of all these quantities it does not depend on energy, it does not depend on 

the amplitude it depends only on the length of the pendulum and the acceleration due to 

gravity. 

So, clearly non-linearity is having major effect on oscillating systems. Now in this class 

we will go a little beyond, we saw simple pendulum which was not subjected to any 

dissipation not subjected to any external forcing. So, in this case let us try and apply a 

forcing.  

So, as I said just to recall once again linear systems are those for which restoring force is 

proportional to displacement, non-linearity a non-linear systems are ones for which the 

restoring forces proportional to some non-linear function of displacement and forcing is 

typically non-linear, typically an oscillatory function, for the reason that even in the case 

that we had studied up until the 11th week, when we studied the forced oscillator several 

weeks back we took the forcing to be some  or . 

So, it is a sinusoidal function. So, generally we take forcing to be a non-linear function; 

if you take it to be a linear function it is a little bit unphysical because suppose you take 

it to be . It is a linear in time all it says is that, the integrated force is going to 

increase with time which is a bit unphysical and cannot be sustained. 

F0 sin ωt F0 cos ωt

F0 × ωt
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So, if you remember what we had studied in the forced oscillator several weeks back, the 

equation of motion is given here, . So, this is the forcing 

term and this one is the dissipation term represents viscous dissipation and this of course, 

is the restoring force term. 

In this case physically we know what happens, the forcing term forces your system at a 

with the frequency  because you have a  there. So, that is the frequency of 

external forcing. Now one of the possibilities that can happen is if somehow your 

external forcing frequency  and natural frequency of the system which is  they 

coincide then resonance takes place, but the single most important lesson here is that if I 

am driving a system with frequency , the system is going to respond by oscillating with 

frequency . 

m ··x + γ ·x + k x = F0 cos ωt

ω cos ωt

ω ω0

ω

ω
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So, since we are looking at the effects of non-linearity here, the system would still be 

non-linear even if I do not take into account this term which is the dissipation term. So, 

even without that the system is sufficiently non-linear provided the restoring force is 

non-linear. So, the non-linearity really comes from the restoring force term. So, to 

simplify our work since we are really interested in finding the effects of non-linearity, 

right now we can actually set . 

So, I will take this term out of consideration. So, which means that now I take this linear 

system and it has this restoring force which is  and replace it by a non-linear restoring 

force. So, which means that I will have to replace this  by something like this 

, where this  is a non-linear restoring force. So, in general it 

could be an infinite series with  and so on and all these numbers , ,  and 

so on they are all constants. 

So, in general you can have a problem as how does this it is a quintessential non-linear 

second order differential equation. 

γ = 0

k x

k x

m ··x + S(x) = F0 cos ωt S(x)

S1x + S2x2 S1 S2 S3
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So, in practice this non-linear restoring force which I introduced really as an infinite 

series, in practice it is never really an infinite series, but in many cases you can make do 

with just two terms like this  and . First let us consider the case when  is 

positive and  is negative. So, in this case you are restoring force is going to depend on 

 and since you have this  and  is going to also depend on the  and . So, in the 

positive side  and  will be positive, on the negative displacement side it is going to be 

negative. 

So, if I set  to be positive and  to be negative what is going to happen is that, you are 

going to have asymmetric oscillations about  equal to 0. Suppose I make this choice  

and  both are positive. So, in this case what happens is that the non-linear restoring 

force is greater than the linear restoring force at any value of  are at any displacement to 

realize this we need to plot this function. 

S1x S3x3 S1

S3

x x x3 sin x x3

x x3

S1 S3

Sx S1

S3

x
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So, here I have plotted this non-linear restoring force  as a function of displacement . 

So, you can see this blue curve here which corresponds to . So, if I put  that 

would simply mean that I am going back to linear regime. So, the restoring forces in our 

straight line linearly related to displacement, that is our benchmark a linear benchmark. 

On the other hand when you have  like this case for example, so, in this case the 

restoring force and displacement they are related by this curve which is shown as dashed 

black line. So, it curves upward. On the other hand if  is negative less than 0 then you 

get this green curve. So, generally if you think of this as a system of mass and spring, the 

case where your  is often called the hard spring and the case where  is often 

called a soft spring. 

S x

S3 = 0 S3 = 0

S3 > 0

S3

S3 > 0 S3 < 0
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So, you can ask the question where does the pendulum case lie. So, in the case of 

pendulum,  is  and then there are higher order terms, but if you look at only 

these two terms, then this would correspond to the case when the pendulum can be 

thought of as a soft spring. 

(Refer Slide Time: 10:46) 

 

So, now with this background let us do one problem where there is forcing on the system 

and we are going to keep the non-linear terms in the restoring force. Several weeks back 

sin θ θ− θ3

3!
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we looked at this problem of beaded string. So, you have a string and many beads in it 

and the simplest case there is when you have a string with simply one bead. So, we 

considered the oscillations of such a system and we even obtain the normal mode 

frequency for that case. 

So, here I am turning that same system vertically like this. So, I have these two points 

 and  and there is a mass which is shown in that which is shown as blue circle here 

and it has mass  and it is held at the center of this string which connects  and . 

So, when it is not disturbed the string has length  and if you move it a little bit the 

string takes a new length capital  and more importantly what we are doing is, we are 

giving it a forcing along this direction and that forcing as shown here is .  

So, I am forcing it in this direction and  is the displacement,  is the angular 

displacement from this vertical. So, initially I assume that there is uniform tension  in 

that string and we can write the equation of motion. So, . Since there is 

uniform tension  in the string, there will be as I have shown here in this free body 

diagram, the vertical in the vertical directions there will be  acting opposite 

direction to one another. So, that will keep the this bead in the same horizontal plane no 

motion in this direction. 

So, this  in this direction,  in this direction would cancel out whereas, the 

component of tension in the horizontal direction they add up ok. So, you get . 

So, my equation of motion would be . So, I am assuming that  is the 

uniform tension in the string and when I pull it apart a little bit the  does not change. 

Again these are the kind of assumption you make, when you work with the within the 

linear regime. So, that is equal to . 

Now, from the geometry of this figure you can see that  will be equal to  and that 

capital , I can write it as . Typically when I write it like this this  is generally 

assumed to be much smaller than . So, if I take  outside it can be written as. So, just 

look at the denominator, it can be written as  as I said  is very small. So, you 

just take  to be equal to  and this kind of an argument is valid if  is small. 

O1 O2

m O1 O2

2L

L

F0 cos ωt

x θ

T0

m ··x = 2T0 sin θ

T0

T cos θ

T cos θ T cos θ

2T sin θ

m ··x + 2T0 sin θ T0

T0

F0 cos ωt

sin θ x
L

L l + Δl Δl

l l

l(1+ Δl
l ) Δl

l

sin θ x
l θ
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So, that makes sense because if  is very small; small  and capital  are nearly equal 

which is what we have essentially achieved. So, I plug this value of  for  in the 

equation of motion and I have this equation of motion. 

(Refer Slide Time: 15:03) 

 

The solution is simply . this capital  is the impedance and it is multiplied 

. So, you can see that the displacement maintains a phase difference with 

respect to the forcing, but very importantly for us is that, displacement has a frequency  

which is same as the frequency of the forcing term . So, that is what right now we need 

and this is a signature of a linear system in some sense. 

θ l L
x
l sin θ

F0
ω |Z |

Z

2 sin(ωt − ϕ)

ω

ω
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Now, let us get to a non-linear system. Now we look at the same problem, but not in the 

linear limit. So, I assume that the uniform tension in the string is  which remains the 

same even now, we will see how to modify tension when the string is pulled a little bit 

apart and the equation of motion still remains the same.  

But and  is equal to  as usual, but now I can no more write this capital  as  plus 

small , I cannot make the assumption that capital  is only a little bit different from this 

small . In the linear system that is what we did and finally, we wrote it as . So, both 

these are not possible, I need to keep  as it is capital  has to be kept as it is. 

T0

sin θ x
L L l

l L

l x
l

l L
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So, my equation of motion is this . Now  is the tension 

when you displace the string by an amount . So, the tension does not remain the same, 

when it is at rest position the tension is  and when you pull it apart a little bit, the 

tension has changed and it is capital  now. You still assume that it is uniform tension, 

but the value of tension itself has changed. 

Now, I can write an expression for this tension because what I call as  is simply the 

restoring force per unit length, since that is simply restoring force per unit length just like 

a stiffness constant. So,  will be  multiplied by the change in length. Change in 

length is capital  minus small  as you can see. Capital  is the new length which is 

slightly or substantially larger than the original length which is small . So, this is going 

to be my expression for the tension when I move the bead a little bit apart in this 

direction. 

So, now I substitute this value of  in this equation of motion and this is what I am going 

to get just a small rearrangement will give you this equation. Now I want an expression 

for  in terms of other parameters. 

M ··x = − 2T sin θ + F0 cos ωt T

x

T0

T

s

T T0 + s

L l L

l

T

L
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So, if you go back to this figure you will see that this triangle that I have, I can use that 

to write capital  in terms of small  and . So, which is what I am going to do here. So, 

capital  is equal to small . Take square root to get an expression for  you get 

this and finally, it boils down to this one. Now, let us get back to our equation of motion.  

Here in particular I want to concentrate on this term here, this first term. So, we will 

assemble the whole equation back again a little later, but let us simplify this term by 

putting in this value of  that we got just now. So, here I have just substituted for  here. 

So, first term is  divided by this quantity and the next term is  so, that is 

this and the last term is  divided by this quantity. So, I have already substituted for 

here. So, I have done all these things. 

L l x

L2 l2 + x2 l

l l

−2T0x −2Sl x /l

2Sx l
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Now, you see that the denominator here, I have this square root.  here and here. 

So, now, I am going to approximate this using a binomial theorem or a binomial 

expansion. So, if I take this and keep only the first term already that is non-linear 

because of  term. So, that is 1 minus. So, . So, you see that I have 

substituted from the binomial theorem. 

So, multiply everything and you will notice that there are two terms  and  

both will cancel out and there are two terms with  term here I will collect them 

together. 

1+ x2

l2

x2 1

1+
x2

l2

= 1− x2

2l2

+2Sx −2Sx

x3
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So, to do that I need to multiply this by  and divide this by . So, if I do that I will have 

 in the denominator, that is  in the numerator just similar to this term. So, now, 

collecting all the terms and this is what I have it is simplified. Now, let us go back to our 

equation of motion. So, which means that I am going to go back to this and now I have 

obtained a very simple expression for this term, which I will use here, but two other 

terms which are this and this they will remain the same as before. 

So, you can see that when I go back to the equation of motion this term remains as 

before, this is the forcing term remains the same as before and I have simply substituted 

this here. With this my equation will simplify to .  

So, this is the simple equation of motion that I have for this system and you can see that 

it is non-linear. So, the non-linearity comes from this term. 

l l

l3 x3

··x = − S1x − S3x3−
F0
m cos ωt
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Now, if  is small we can assume that the solution is of the type . So,  is again 

an amplitude we will have to determine later if you want the full solution, but will not do 

that here. So, now, if I substitute this in the equation of motion, I will get this following 

equation, all I need to do is to calculate starting from  calculate  and  and 

substitute it in this equation and that is going to give me this. 

Now, having done that, you see that I get this term , the other two terms involve 

only . So, I can actually put them all together, but this  I want to write it in 

a sort of linear way using  itself. So, just use the identity, trigonometric identity for for 

 that is . 

S3 A cos ωt A

x1 = A cos ωt ·x ··x

cos3 ωt

cos ωt cos3 ωt

ωt

cos3 ωt 3
4 cos ωt+ 1

4 cos 3ωt
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So, once you put that in and collect terms together you will see that that is one  

term and other is  term and then rest are all constants, this entire thing this is a 

constant and this is also a constant. So, here the solution would mean that find , you 

cannot do that if you integrate this equation twice, it is very easy to do it.  

So, when I integrate it first time, I will get this equation and of course, there will be a 

constant of motion and when I integrate it second time, I will get this equation of motion 

I have said those two constants of integral to 0 which means that it will correspond to 

some kind of initial conditions, where those two constants of integrals are 0. 

Now, look at this solution that I have. So, there is the first term which has this  and 

there is a second term which has . So, if you remember there was no  in 

our original equation of motion. So, the forcing term was forcing the oscillator at a 

frequency of  not . So, somehow the non-linearity of the system has produced in a 

harmonic of the frequency of forcing. 

cos ωt

cos 3ωt

x1(t)

cos ωt

cos 3ωt cos 3ωt

ω 3ω
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So, let us see what are the salient features of this solution. So, one is that the solution 

oscillates with frequency  and also with frequency . That is unusual because if it is a 

linear system and you force it with frequency  the solution also oscillates with 

frequency , it does not produce additional frequencies or additional harmonics, but 

somehow that is not true for a non-linear system. 

And secondly, the amplitude does not grow in a unbounded manner. The reason for that 

is the natural frequency of the system which we identified as being one quantity in the 

case of linear system. So, remember that if you take any linear system there is something 

that you could call as your natural frequency of the system, which was not amplitude 

dependent. It is basically like calculating time period of a oscillator no amplitude 

dependence there. 

On the other hand in a non-linear system, the natural frequencies are amplitude 

dependent. So, the net effect is that the natural frequencies at low and high amplitudes 

they are very different. So, what would this do? Even if you did not have dissipative term 

present in your equation of motion, the amplitude is not going to grow in an unbounded 

manner simply because there will never be a proper matching with the natural frequency 

of the system. 

ω 3ω

ω

ω
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In the case when  is positive to remember this term here in the solution, you will get 

the response curve to be something like this. So, in particular this is what you would call 

the hard spring limit and if  is negative, you will end up with the soft spring limit this 

is the response curve. So, again to emphasize the point is that you are not going to have 

resonances at least not that easily in non-linear system.  

And in fact, some very unusual things can happen, for instance there are because this 

response curve is a bit unusual you can have jumps in the curve because this function is 

not quite single value for a given value of  you can have two different amplitudes. So, 

there can be fast jumps between the two amplitudes. 

So, all these are essential effects of non-linearity. So, in the in these two classes taken 

together we have seen the effect of non-linearity in a pendulum which was not driven, no 

dissipation and in this class what we have seen is the effects of non-linearity in the case 

of a forced pendulum. We did not really quite worry about putting in dissipation which 

you can do, but it is not going to alter pretty much in most of these results. 

S3

S3

ω
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