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Welcome to the 12th week of this course on Waves and Oscillations, this is the last week 

and congratulations to all of you who have been following this course without a break 

until this point. So, this is a point to take stock of what we have done all these 11 weeks, 

but that I will do in my last class of this course. 

But in this class I am going to look at what is it that we can do beyond what we have 

studied that is the broad question. In the sense that pretty much everything that we have 

done throughout this course has to do with an important assumption that the oscillations 

are small enough. So, essentially you are sticking to linear systems much like the 

harmonic oscillator that we began the course with. 

Now, the broad question is what happens if you go beyond linearity, beyond linear 

oscillators what is it that we can do? So, much of this is at some level for information 

purpose in the sense that this will not be taken into account for the exam. I wish that you 
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take time off from say exam pressure in a sense and look at the new physics that comes 

out when you leave linearity and get into non-linear systems. 

So, as it is stated here in the first slide for all linear systems everything that we had seen 

force or the restoring force more correctly is proportional to displacement. So, when you 

want oscillations you are restoring forces proportional to displacement and you had a 

minus sign sitting in front of it. So, that provided the necessary ingredient for oscillatory 

behaviour. 

So, that is our template for linear systems. What happens with non-linear systems? So, in 

this case the restoring forces some function of displacement like this. So, here I have 

indicated it as  of displacement meaning that it is some function  which is a function 

of displacement and in general this function could be a fairly non-linear function. So, all 

these are non-linear functions. 

So, there is infinite variety of non-linear function that you can put in there and ask for 

how does the dynamics work out in such a case. But we will restrict ourselves to 

physically interesting situations and since we are going to discuss it pretty much in the 

fair end of this course. We will also restrict it to one or two simple cases, but otherwise 

there is a huge variety of possibilities once you leave the linear regime and get into non-

linear systems. 

g g
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So here I have pictorially depicted what is linear and non-linear. So for example in the 

case of linear as I said the restoring force is proportional to displacement. So, there is a 

straight line relation between force and displacement. On the other hand if you look at 

the case of non-linear systems in general. So, the restoring force is no more linearly 

related to displacement like I have shown here. So, here I have shown two different non-

linear functions one that seems to rise and appears to saturate the continuous red curve 

and the other that seems to oscillate the dashed red curve. 

(Refer Slide Time: 04:08) 
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So, a simple prototypical example of non-linear system would be the case of pendulum 

ok, you might tell me I have already studied the pendulum. But if you remember quite 

well we studied the pendulum in the linear approximation, when the  was 

approximately equal to . 

So, here I have the set up for the pendulum. So, there is a bob of mass  which is 

hanging from a tout string with uniform tension in it, the length of the string is capital . 

And so again to write down the equations of motion you just need to look at the free 

body diagram which is shown here at the bottom of the bob of mass . So now, when I 

finally, write the equation of motion here is what I have, ,  is the acceleration 

due to gravity  is the length of the string so it is . 

Now, when we did the same problem in the regime of linear approximation, we 

converted this what is essentially a non-linear problem into a linear problem by doing 

this. By saying that  is approximately equal to  provided  is much less than 1. So, 

this is one way of stating that  is small, but typically angle of about few degrees like 3, 

4, 5 degrees would still give you a reasonable approximation. But if you take your let us 

say you have the bob of your pendulum and you leave it here the angle that you have 

made is really large, close to 90 degrees in which case this approximation would not 

work at all. 

Suppose we go ahead with this approximation then you could write the equation of 

motion, the way it is done here and immediately identify what is the frequency of motion 

and from the frequency of motion it is possible to directly write the time period. So, the 

frequency of motion in this case is  and once you realize that  is , where  is the 

time period you can write an expression for time period of oscillation of the pendulum. 
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Now, I want to work with non-linear pendulum in the sense that I do not want to make 

this simplifying assumption that  can be approximated by . So, here angle is 

arbitrarily large that you cannot make that approximation. Hence I need to work with this 

full equation of motion and as usual the solution that I want is  we will see if we can 

even get to that, but that ideally is what I want to obtain. But more importantly we want 

to find out the time period even that is going to tell us quite a bit about the nature of the 

system itself. 

So, let us keep in mind that this  is , in particular keep in mind that the time period 

is also going to be a function of  and  and both are constants. So, now to solve this 

what I need to do is to go to this equation of motion, multiply throughout by . So, that 

is what I have done in the next line here. So, simply multiply the equation of motion by 

. 
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If I do that this is what I am going to get, so you can see that there is a  term in both 

the terms of this equation. Now, if you look at it closely you can easily realize that it can 

be rewritten in the following way. So, I can take  outside and put together it put rest of 

the terms together like this. So for example, take this term the first one half  whole 

square which I have here. Now, if I apply this operator  on this, it will give me  

into . 

So, 2 and 2 will cancel and I will be left with this. So, this seems to be correct and you 

can also check that the second term also gives what we expect. So, I have  of some 

quantity is equal to 0 that would imply that the quantity inside the bracket it should be 

equal to a constant, only then  of that constant will be equal to 0. So, I have identified 

one constant of motion, remember that this  itself is a function of time and  is also a 

function of time. But this combination here is independent of time that is a constant. 

Now, to determine this constant we need to get the initial conditions. 
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So, I have my initial conditions as follows at . So, you identify some arbitrary time 

as your 0 th time and say that the initial angle is  and the initial angular velocity or 

. Now, put these two conditions back in this equation. So,  is 0 which means 

that this term will go to 0 and  will become theta 0. So, I am going to have  to 

be equal to . 

So, now I can put this value of a back in my previous equation which is this. So, if I do 

that this is what I am going to get and then a slight rearrangement will give you this 

equation, normally to be able to find  I need to integrate it. 
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So, let us go towards that goal even though it is not a easy task, but before that this is 

what I will get if I use this trigonometric identity. Then finally, rewriting everything I 

will have  whole square will be equal to  and rest of it would be simply 

. And simply take the square root on the right hand side you will get 

an expression for  and again now rest of the work is you need to integrate it. 

You will notice that on the right hand side the variables are of the form  and  is . 

Now, to make it common I can bring this 2 here and make the variable here also  if I do 

that and bring all the terms involving  on one side this is what I will get. 
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Now, you see that the variable of integration is . So, before that let me identify some 

constants. So, I am going to designate this  as some constant  after all  is a 

constant. So,  will be a constant. 

And again for ease of analysis I am going to do this change of variable go from  to a 

new variable which I call  and the relation is this that . Now, since I 

have made a change of variable from  to  I need an expression for .  will not 

change. But  I need to replace it by . So, I need to find out how is related 

to  and here is how we do that. 
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Now, we are going to use this relation substitute it here and integrate. So, I take this the 

right hand side of sorry the left hand side of this equation here and substitute for . 

(Refer Slide Time: 13:10) 

 

So, I have this full equation written here as it is, now I replace everything by . So, after 

you do all these manipulations finally you get this relation. Now, this can be integrated. 
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2 )

α

724



(Refer Slide Time: 13:28) 

 

Now, even though I want to find solution you will realize that it is not an easy equation 

to integrate and solve, so we will first settle for finding the time period. So, I knew the 

initial conditions in terms of  which is how the problem was specified. Now, we will 

write the same initial condition in terms of , we said that at  at initial time  is 

equal to . So, that corresponds to some angle of the pendulum and if , so you 

note that we have this relation here which we just discussed two slides back. 

Here if I take  to be  then I have a  on the left hand side and another  on 

the right hand side. They will cancel one another and I will be left with the condition that 

 should be equal to 1, this implies that  has to be . So, here the  should be equal 

to . So, the correct initial condition written in terms of  is that had ,  is , this 

corresponds to the case when  is equal to some arbitrary value . 

Now, what happens if  at , . So, I am considering a case where there 

was this initial angle  that is the amplitude and it comes to this point that is when 

. At this point the time it has taken is one fourth of the time period. Because it 

starts from here it goes here goes back by the time it comes here that is one full time 

period and it has basically moved one fourth of the total distance to be covered and it has 
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taken one-fourth of the total time. So, in this case at  , so that gives us the 

limits for integral. 
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So,  will go from 0 to  and at the same time alpha will go from 0 to  this is the 

integral that needs to be done. The right hand side of this equation is very easy to do this 

will simply be . I have everything to write an expression for time period in terms 

of this integral. 
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So, here is what I have now for the time period, unfortunately this integral cannot be 

written in terms of simple functions. So, we give it a name this function is called the 

Complete elliptic integral of first kind. So, this function which is which has a standard 

symbol capital  is a function of this value which is small . So, given a given a value a 

small  the integral can be calculated.  

As I said it is called the complete elliptic integral of first kind. But what is useful for us 

is the fact that actually there is a infinite series expansion for this integral, it goes like 

this I have written that we will take this infinite series expansion and put it in the place of 

this integral. And you will notice that this expansion has this double factorial notation 

 and  plus  double factorial. 

K k

k
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So, this is what a double factorial notation means. So, in general if you see something 

like  where  itself is an integer, whatever be ,  is always going to be 

an odd integer. So, it basically means the following that  is equal to 1 into 3 

into 5 into 7 and so on until 2 n minus 1.  

So, it is actually a product of all the odd numbers until  and similarly . So, n 

is an integer  will always be an even number. So,  is a product of all the even 

numbers, so it starts from 2 4 6 8 and so on until . 

If I keep only the first term of this expansion, so this is an infinite series expansion for 

the elliptic integral. If I keep only the first term which corresponds to saying that all the 

s are 0 for me, so I will cut down every term here which is a function of , so in that case 

 is simply equal to . So, I just put in that term  here and you will see that it gives 

me the time period of the standard pendulum or the standard linear pendulum or the time 

period of the harmonic oscillator limit of the pendulum. 

So, what we see is that in the limit where you do not include the non-linear effects by 

neglecting all these values of  in this expansion, you are able to get the correct limiting 

behaviour corresponding to the harmonic oscillator limit. And as you keep adding higher 

order terms in  you are going to take into account more and more of non-linearity and 
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hopefully your answer would be closer to the exact result. So, to see how close it will be 

here is a picture that I have calculated. 

(Refer Slide Time: 20:02) 

 

So, what is plotted on  axis is the time period and the  axis is , what we know is for 

small values of  it should behave like a simple pendulum and that is the harmonic 

oscillator limit. As this  increases more and more it is equivalent to saying that I am 

pulling my pendulum to a very large amplitude and then leaving it. So, in that case the 

small  approximation breaks down. So, this there should not be any agreement between 

the time period that you calculated in the oscillator limit and the time period of the full 

non-linear pendulum. 
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So, what you see here is precisely that let us see why is there something in what we 

derived which will tell us that the system is non-linear. So, I have this expression for  

that we just derived time period is  and then you have this elliptic integral of first 

kind.  

So, you see this term  here inside the integral you are integrating over , but you 

have this term . And from what we studied earlier on you can write this relation, 

 depends on  which is that initial amplitude initial angle with which by which you 

move the pendulum and leave it to set it to oscillation. 
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So, which means that the time period depends on this  your initial condition and this 

quantity  here is related to energy. So, which means that  if I at  would 

correspond to . So, energy is also related to the initial conditions, so here is 

the point that I am trying to drive. That this time period that we have is a function of 

energy of the system, it is also a function of the initial conditions. So, that is the 

signature of a non-linear system. So, if you compare with what we had for the simple 

pendulum that the time period is dependent only on  both are constants,  is the 

acceleration due to gravity,  is the length of the pendulum. 

So, time period depends only on these two quantities not on initial condition it is in 

particular independent of energy. So, the simple linear pendulum time period is 

independent of energy. But when you analyze a non-linear system it turns out that time 

period depends on energy or in other words it also depends on initial conditions. So, this 

is the signature of a non-linear system. So, it is something that is a common attribute for 

all non-linear systems.
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