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Welcome to the 5th module of 11th week, this entire week we are looking at Waves in 

optical systems. In particular in the last four classes we mostly concentrated on 

interference patterns. In this class we look at Diffraction and there is one problem that 

we had left incomplete in one of our previous classes, especially the one of calculating 

the resolving power of Fabry-Perot interferometer.
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So, let me explain diffraction with the figure that I have here. So, let us assume that there 

is a light wave front that is coming from the left hand side and it is a plane wave front 

and it is falling on the slit whose width is . If light were exactly travelling in straight 

lines what you would expect is that if I map the slit to a screen a little bit away from the 

position of the slit, I can mark these two positions  and  as you will see here  and 

.


So, if light were actually travelling in straight lines only that portion between  and  

would be uniformly lit up and outside of  and  the screen would be completely dark, 

this is what you would expect. On the other hand what is generally seen is that under 

some conditions that is in fact light falling outside of  and  that is one thing. And 

secondly, if your wavelength of light is approximately equal to the size of the slit which 

we have taken to be , then it is also noticed that the intensity of light which we expect it 

to be uniform earlier on, it is not really uniform within  and .


So, there are some bright and dark fringes it is not uniformly distributed inside  and  

and diffraction effect cannot be explained with ray approach alone. So, if you remember 

we used ray approach to explain reflection and refraction and that is basically the limit of 

a wavelength of light tending to 0 and that approach would not be suitable here because 
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we need to work with again waves interfering with one another. So, we really need the 

full wave phenomena. So, we need to consider nonzero wavelength of light.
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What is the difference between interference and diffraction? So, I have tried to show that 

with these two figures here, one common way of looking at interference is the two slit 

inks experiment kind of interference pattern. So, on the left hand side I have this double 

slit interference setup. So, you have light coming from the left hand side there is a wave 

front and there are two slits as you can see and the wave front part of the wave front 

passes through the two slits and maybe at some point  at the screen we want to know 

what is the intensity of light that is received at point  on the screen.


So, the way one would work is you take into account the light ray coming from one of 

the top slit and the bottom slit. Find out what is the path difference convert it into a phase 

difference and then you can decide whether what you are going to see would be a bright 

or a dark fringe at position , this is interference for us. So, there are these two beams 

from different slits, two different slits it is very important.


So, there are these two beams coming from two different slits which interact with one 

another and produce the interference pattern at . On the other hand you see this 

diffraction setup on the right hand side, I have this single slit setup. So, again it is the 
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same thing light comes from the left hand side you can assume if you like that it is a 

plane wave the light passes through the single slit and again the question is what would I 

see it some position  and obviously, this position  is exaggerated.


So, ideally I would like to look at what happens maybe in this region. But in any case the 

point here is that here we are again looking at two wavelets or two beams which come 

not from 2 different slits, but from different parts of the same slit. So, look at the diagram 

that I have drawn here.


So, there are these two lines which I emerge from two parts of the same slit. Then we ask 

the question if these are the two beams how would they interact and would they produce 

a bright or a dark fringe at position  ? So, that is diffraction. So, if you think about it, it 

is not so much of a difference between interference and diffraction.
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In particular you would notice that there is really no difference in physical behaviour.
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Let me say that there are two broad classes of diffraction problems. So, the first of them 

is the Fraunhofer diffraction. So, in this case let us say that diffraction happens at this 

position of single slit which is shown in red colour here this one.


Now, you have a source of light which comes really from far distance in principle 

infinity, but you should imagine that the source of light is really far from us that I can 

almost assume that when this light reaches the slit it is a plane wave. But you do not 

necessarily need long distance to produce a plane wave you could also have this effect 

happening at very short distance by using a lens for example, and if you place your 

object at the focus of the lens you will render it in parallel on the other side. So, for 

example, you can keep the source of light at the focus of the lens and that would give 

you parallel rays or essentially plane wave front. 


And now, once the waves pass out through the slit the screen is again assumed to be 

really far enough, in principle at a distance which is infinity, but in practice it is fairly 

large distance. And, the reason as you will see is that these help in making some angles 

small and certain approximations work very well and help us in computing analytical 

forms for the diffraction pattern easily which is one reason. But more important than just 

the mathematical convenience is the fact that this is something that is also most useful in 

practice.
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The second class of diffraction pattern is the Fresnel diffraction pattern. So, here as 

opposed to Fraunhofer case this  and  which represent the distance from the source 

and distance to the screen they are not infinite, they are kept really reasonably close to 

the place where diffraction takes place. In this case, the waves cannot be assumed to be 

plane waves. So, hence dealing with Fresnel diffraction at a theoretical level is somewhat 

more difficult than dealing with Fraunhofer diffraction.
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I am going to particularly concentrate on Fraunhofer diffraction of a diffraction pattern 

arising from a single slit. So, here is a sort of enlarged diagram of the same thing, I 

assume that the incoming waves are plane and the slit I have has a width  this is the 

width  which is marked in the figure and this thick dark lines that you see these ones 

here that is your slit.


The open region is the slit black region will block off the light from going ahead, and I 

have this screen   at the far right and the question I ask is often what is it that I will see 

at position  on the screen , to bring all the waves into focus I use a lens like the one 

that is shown here. So, what we will do is begin by dividing the width of the slit. So, 

width of the slit is  we will divide it into  equal smaller regions and size of each of the 

smaller regions is . So, the entire width  can be written as  multiplied by .


So, let us say that  that I have here is one such small width . So, what I am going 

to do is to consider array which is leaving from the point  and another ray which is 

leaving from the point , and the one that is travelling from  makes an angle  with 

the horizontal at that part. Now, let us look at this region in some detail to understand the 

geometry.
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So, I have enlarged this part and shown it here. So,  and  you can see here black line 

is drawn and that has a width  the way that we identify a while before. And this is of 

course, the ray that travels here like this and there is a second ray from  which is 

originating and travelling in this direction.


And now if I drop a perpendicular from the point  on to this ray which is going from 

, it will make an angle , the same  that you see here. So, the path difference which I 

am interested in is given by this quantity  is  as simple as that.
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Now, that I know the path difference it is easy and straightforward to calculate the phase 

difference. So, the phase difference  is equal to  multiplied by the path difference 

which in this case is . So, now, what I want to find this what is the field at  due 

to wave that is emanating from position  and from position .


So, let me assume that since it is a wave, it should be solution of a wave equation and let 

me assume the solution to be . So, it is something that is propagating towards the 

screen and for the one that is propagating from position  it is the same , but 

there is a phase lag because of the path difference; because of the path difference  

there is a phase lag and we have already calculated that phase .
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So, I can take that to be . And now you can actually keep doing this 

because if you go back and look at this figure you will see that I have defined a point  

which is at a distance  from  and there will be an  which is at a distance  from  

and so on. So, as we have defined there would be  of these  gaps basically. So, 

each one would maintain a phase difference of  with the predecessor.


For example from ;  will maintain a phase difference of  with respect to the wave 

emanating from . So, in which case I could have written the field at  due to wave 

starting from position  as  and so on. So, now, I need to calculate the 

resultant at  because there are these waves coming from , , ,  and so on up to 

 or  and they all are converging at . So, I would like to know what is the 

resultant field at . So, that would be simply be a vector sum of all these , 

 and so on so, which is what I have written down here.
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So, now what I need to do is to do this sum. So, I have rewritten that sum here, so, it is 

 plus  and so on up to . You can do this sum 

by considering a geometric series for example, what you could do is to write something 

like this  and sum it over  small  going from 0 to capital .
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But, what we want to sum over these cross terms, but this  has cos plus; it will be 

. So, it has the real part which is the cos term and the imaginary part 

which is the sine term. So, finally, after you do the sum you just take the real part of the 

answer that will give you this summation. So, I mean just to indicate one more step of 

how it should be done, you can take  outside because it is not part of the summation 

 to , 


So, this quantity here this summation here is a geometric series. So, sum to  terms of a 

geometric series is a well known quantity, just apply that sum you will get the final result 

and after that take the real part of that you should get this answer.


(Refer Slide Time: 16:46)





And as you can see when I want to calculate the intensity all I am interested in is this 

quantity  which is the amplitude and I have extracted this quantity . So, now I am 

going to assume that  is small enough. So, I want to know what is  in the first place.


So,  is just put in we know what is  just put in everything and if you assume that or 

take the limit that  which is like saying that the divisions are getting smaller and 

smaller or in other words the  that we define here gets smaller and smaller as the 

. So, after all  will be equal to  So, as ,  will be getting  will be 
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getting to 0. So, which is the idea that we use here and in this case  is simply equal to 

 itself.
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So, we are just putting back  in the formula, and now I have  to be equal to . 

Now, if you take the limit of  for the phase difference , then it turns out that 

phase  goes to 0, after all  is  into  multiplied by . So, if  is going to 0,  will 

have to go to 0.


So, now, let us assemble all these information together in . So,  is this formula here 

which came from what we wrote down earlier and what I have done here is to multiply 

and divide by . So,  is multiplied and divided by  and then you have that  and 

since we are going to look at the limit , then in that case  also tends to 0. So, 

 will be just  that is approximating  as .


But in the numerator we cannot write  to be , because while ,  does 

not tend to 0. So, what we do is to use this relation that we just calculated for . So, you 

plug that in this equation and then many things will cancel out and now you can write 

this expression for a 0 as small  where  is this quantity which is . Now, 
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I can write the expression for , so, it is equal to . So, this is my amplitude A 0 

times the usual other term which is the cos term.
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So, the intensity distribution is just the square of this quantity. So, I can write it as 

. So, now, you can ask when will it give me a dark fringe, when will it give me a 

bright fringe. So, first case is when will intensity be 0 or dark fring? So, that will happen 

if as you can see from this formula if  is equal to   is an integer.


But  should not be equal to 0 because if  where equal to 0 the denominator also 

would get to 0 in this case that gives me the condition that  should be equal to  

for intensity minimum. And here  is again integer plus or minus 1 plus or minus 2 and 

so on. Now, what happens if ?
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So, in that case . So, you can put  in this formula  will be equal to 0 and in 

that limit this quantity  goes to 1 and what I will have is a maximum; a maxima at 

the centre .


So, if I plot intensity as a function of  there is going to be a maxima at  that is 

this point as you can see and then there is going to be a decay and the decay is of the 

form of square of . So, it looks like the kind of intensity patterns that we have seen 

before it is of the form , but its square of that quantity.
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Next we will go to the problem that we decided to take up in this last module that is the 

resolving power of Fabry-Perot interferometer. So, let me very quickly go through the 

Fabry Perot interferometer.


So, it consists of this etalon. So, there is light coming from one direction and it 

undergoes multiple reflection and also partial transmission on the other side. So, you are 

asking the question what would I see on the other side due to multiple beams that are 

emerging out of the etalon. So, that is the question. So, we worked out the result for the 

Fabry-Perot interferometer we saw in particular that it has very high sensitivity.




(Refer Slide Time: 22:52)





In the sense that when you plot intensity as a function of the interference order the peaks 

are very sharp for the cases when the reflection coefficient capital  is sufficiently large. 

But the question that we are now trying to address is what is the resolving power?


In other words the question is if you go back to this interferometer itself suppose I had 2 

wavelengths of light that enter the etalon and individually both of them will create 

separate interference pattern like the one that is shown in this figure. And if you assume 

that the 2 wavelengths are very close to each other, the question is can I resolve them can 

I see them as separate peaks in the interference pattern due to Fabry-Perot interferometer.


So, here I have drawn the intensity versus order figure. So, this continuous curve is for 

the wavelength of light  or interference produced by wavelength  and the other one the 

dashed line is for interference produced by wavelength . So, they are offset by a 

small distance  in the space of order .
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So, we will say that for our purposes the fringes are well resolved when they cross each 

other at . So, I is the intensity on the  axis. So, I have these two fringes the 

one with continuous curve and one with the dashed curve. So, when they move apart half 

the values of the peak intensity. So, peak intensity is  for both of them and half their 

values they cross at this point. So, when they do that then we will say that that is the 

criteria for us for having resolved to close wavelengths.
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So, the starting point here is the intensity formula or the transmitted intensity which we 

derived entirely in the last module. So, if I identify  as I max, then this entire 

formula that I have  can be written like this; this underscore  the small  here is to 

imply that intensity of the transmitted beam.


So, you can easily see that if , if the phase difference is 0 then  is equal to  

because if  this entire term in the denominator would go to 0 and there that would 

leave it with only 1 in the denominator hence, . On the other hand if this entire 

term is equal to 1 in that case the transmitted intensity is equal to .
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And what we know is that this kind of fringes are visible only if the phase difference is 

sufficiently small or in other words we need to work in the limit of  going to 0 in which 

case I can always approximate  to be equal to . Then let me look at this term 

which is .


So, all I have done is to simply approximate  by  simply because  is equal 

to  and square of this quantity is  whole square that is . Now, I want to find out 
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what is the value of  if this has to be equal to 1; it is very easy to do that. So,  in that 

case would be equal to  divided by . So, you can cancel off 4 and 4.


So,  if we call it that way would be equal to square root of this and that would be 

. This is the phase change when this quantity  and that is the condition 

when  is , basically it is the condition when we would say that 2 wavelengths 

are well resolved.
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So, what we know is for th order of interference  is  again, refer back to the 

previous lecture we have seen this;  is  we derived it in its full detail.


So, here you should note that both  and  are constants. So, in that case now if I ask for 

variation on both side or in other words I take a . So, this delta is basically like taking a 

variation of quantities which are variable. So,  would be 0 because  is a 

constant,  is a constant, so they cannot be varied. So, left hand side is 0, but if I take 

 that I have here, in that case that you can calculate because both  and  are 

variables.
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So, that will be  and left hand side is 0, so that quantity is entirely equal to 

0. So, by simple manipulation you will get a relation between  and . So, in other 

words now we know that there is this relation between how much of change in 

wavelength corresponds to how much of change in order.
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But what we know is if  is equal to 1 the phase change is . So, go back to this 

figure. So, I have  here and I have  here. So, if  changes by unit value the 

change in phase is . Now, if the phase change is 2 into  half some number that we 

know, then to what  would it correspond to? That is a question and that is very easy 

 is 2 times  half divided by . And the definition of resolving power standard 

definition is  when I say resolving power is large it means that I can differentiate 

between two wavelengths which are which differ by .


So, smaller the  is or smaller the  that I can differentiate better is the resolution. 

You can see that  will be equal to  and since we are interested in the magnitude we 

can ignore the negative sign take the modulus of  by , then we just need to put in the 

values. So,  is the order and  can be now written in terms of this relation.
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So, that will be  half in to divided by  and  itself was just now calculated to be 

this one, . So, if you put all these things here it will turn out that your; it will turn 

out that your resolving power is . So, it depends on reflection 

coefficient. If  is sufficiently small then the resolving power is going to be fairly, high.


So, let me close this session by saying that we studied the diffraction pattern. Diffraction 

is not too distinct from interference, it is physically not different, it is only a question of 

scale. And we looked at the diffraction pattern due to a single slit and we went through 

the usual calculation by dividing the slit into  parts and looking at waves coming from 

each of those and finding out the resultant due to all of them.


Finally, it turns out that you will get an diffraction pattern that is of this type, and then 

we went ahead to calculate the resolving power of a Fabry-Perot interferometer a 

problem that we had left incomplete in one of the earlier classes, and it turns out that the 

resolving power depends on  which is the intensity of reflection in the Fabry-Perot 

interferometer.
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