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Michelson and Fabry-Perot Interferometers


Welcome to this third lecture, we are in the tenth week; this entire week we are going to 

look at interference phenomena and diffraction phenomenon. Today in particular we will 

look at interference again with two really important contributions towards the end of last, 

towards the end of 19th century, the Michelson and Fabry Perot Interferometers. 


But before we get into that, let me quickly remind you that interference is a general class 

of beautiful wave phenomena. So, in particular you need waves to be able to explain 

interference; in the sense that we cannot escape by taking the limit lambda tending to 0 

and working with race, which we did, when we worked for, when we try to explain 

reflection and refraction.


So, here we need to keep the wave forms and to see any kind of interference effect, you 

need two coherent beams. Generally you will produce them from a single source. The 

main reason being that, if you take two independent sources, they are unlikely to be 

coherent; the phase relation is not going to be constant which is one reason and the main 

reason why you need to draw your two light sources from a single beam. 


Today we will start with the Michelson interferometer; historically it was one of the most 

important contributions towards the end of a 19th century, which allowed experimental 

determination of large number of spectral lines.
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So what I have is a source of light which is shown in red color, on the left side you can 

see that here, this one. So, that is a source of light and I have some kind of a glass plate 

here, which makes it an extended source. So, from what is essentially a, what might look 

like a point source of light, we get an extended source of light. And this light goes 

through to the right side and there are these two glass plates and the glass plate let us say 

 is such that it is partially, it is partially mirrored. So, it reflects the light that is coming 

from left side upwards and partially transmits it.


So, you can for instance assume that 50 percent of the light is transmitted through it and 

another 50 percent is reflected. So, the reflected component goes up and hits the mirror 

 and comes back that is reflected 100 percent and then passes through  and directly 

comes to the detector here. And the beam of light which got transmitted through , it 

goes straight hits another glass plate ; it is often called the compensatory glass plate, 

which is located extreme right.


And then gets reflected from there, and again comes and hits the passes through  again 

comes and hits glass plate  and is reflected towards the detector. So, starting from one 

beam of light, we have now two beams of light; one which comes from  passing 

through  and comes and hits the detector, the other one which comes from  passes 

through  gets reflected by  and finally, hits the detector. 
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So, there are two beams of light and hopefully under good set of conditions they will be 

able to interfere and produce interference pattern for us. So, in particular we take these 

two mirrors  and  to be plane mirrors fully reflecting and  itself is movable 

whereas,  is fixed. So, the way to create path differences by making this  moveable, 

this glass plate  is often called compensatory glass plate and it is kept mainly because 

you want to equalize the path difference in the two arms. 


And the reason why we need to put that is, if you carefully look at the diagram here; you 

will notice that the beam that is starting from the source going through  hitting  and 

finally, coming to the detector passes through  three times. On the other hand the beam 

of light which passes straight through  and hits the mirror  and then finally, comes 

back to detector would have passed through a glass plate only once.


Whereas, the first one passed through it 3 times and this one passed through the glass 

plate basically  glass plate; it passed through only once and to compensate for this 

difference you introduced this . So, that would equalize the path difference or the 

optical path difference. Of course, in principle you need not really require the second 

glass plate, you can equally achieve that by adjusting the length of .


Imagine that you are actually putting yourself, putting your eye at the place where the 

detector is. So, what you would see is that, you will see ; because you are looking 

straight through the detector and through glass plate . So, you should see ; but you 

will also see the mirror . And in addition you will also see the source , which is 

shown in the red color on the left side, you will see the reflection of source  in  and 

.
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So, here I have the source on the left side. So, that is a screen and I have just taken one 

point which is denoted by that red dot that you see there. So,  is the screen from where 

you have, you are getting that extended source and red dot is the one particular point we 

are monitoring. And my detector is at the position that is shown here. So, as we said, the 

first thing you will see is this light from the source reaches  and comes back and hits 

your eye at the detector.


So, that is marked here, through this red colored line. So,  is of course the, this mirror 

 here. Now as I said you will also see  and we shall call this  prime in this 

picture, we see  as a reflection; which is denoted by  here. So, the same point will 

be seen in  as well. So, the light coming from  will also reach the detector, in other 

words it reaches my eye if I am seeing it there.


And that is also shown here as the blue line. Now if there is any path difference between 

this  and  that would be the distance between this  and . So, that is the optical 

path difference between these two paths. So, it is essentially these two arms of the 

interferometer. Now as I said, we will also see the reflection of the source or in other 

words we will also see the reflection of the screen itself. 
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So, here what I have shown you is the reflection of the screen which I call  coming 

from  and the light coming from there reaches the detector through this red line. And 

then we also see the reflection of the screen from  and I should have indicated that this 

red dot is this point ; this point  has a position in screen  and , which is called  

and  as you see in this diagram.


Now the distance between them  and  will be , provided that your optical path 

difference is . So, now, what I have in front of me is the complete picture of our analog 

of this interferometer, as a sort of linear arrangement; the path difference is simply this 

region which is marked in green color. So, here is the standard way of looking at the 

Michelson interferometer with two arms and here is the same Michelson interferometer 

drawn out linearly. 


So,  and  are the position of mirrors as seen by the detector and  and  are the 

reflection of the screens as seen by the detector.
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From this we obtain this path difference. So the path difference is . So, phase 

difference is simple to calculate, . Now we need to account for any 

additional phases that get accumulated due to reflection. As far as the path difference is 

concerned one important reflection we need to take into account is this; horizontal beam 
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when it comes and hits  and gets reflected downwards, it gets an abrupt change in 

phase by a quantity  that needs to be added.


So, in principle when reflection takes place at the mirrors  and , there will be a 

phase change of ; but we can ignore that, because that is going to add  to both the 

arms. So, we can sort of cancel out both and additional phase change of  that comes 

from the reflection that happens here. That is the contribution that we need to add. So, I 

have accounted for that additional phase by adding this  here.
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Condition for constructive interference is that, this  should be , this is 

after taking into account that additional phase difference. So, I simply have to substitute 

 in this equation here or more correctly in this equation here. And 

if I do that, you will see that, I will get phase  to be equal to ,  is integer. 

And similarly the other condition is I can take  to be equal to .


So, once again you go back to this and substitute  here and that is going to give 

you phase which is equal to  and this is of course, the condition for destructive 

interference. There is the situation that we had seen for Newton’s rings as well as for the 

case of difference coming from a glass slab of thickness . 
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A constant  value will have a locus, which will look like a circle. Hence all the points 

that have same  value would have either a bright fringe or a dark fringe, depending on 

which of the condition is being satisfied. Hence you should see circular fringes. So, 

remember that this  is defined for a particular point on the screen. So, different points 

on the screen are going to define for you different values of . 


So, hence the whole pattern of interference that you will see, we will take contributions 

from all this range of  values. Hence whenever the  value is right in the sense of 

satisfying one of these conditions, you are going to get either bright or a dark fringe; but 

in general the result is that it is going to be a circular fringe.
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Here I can summarize these results. So, with an extended source like the one which we 

analyzed, we actually started with the point source and made it into an extended source 

by putting in some glass or something like that. With an extended source of light, what 

you will see is circular fringes and the path difference in this case is . So, this is 

the case that we analyzed. On the other hand you can consider a somewhat simpler case 

by simply using a point source of light. 


If you use point source of light, it is like saying that there is only one point here; there is 

only one point on the screen, which lights up, everything else is dark. So, you are 
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looking at an interference that is happening due to one ray of light coming from the 

source. And in that case , so the path difference will simply be ; it is equivalent 

to saying that there is one ray of light which passes through two arms of the 

interferometer.


And the path difference is simply the difference in the travel distances and that is simply 

equal to . And what you will see is not circular fringes, but since now every parameter 

is fixed there is no  at all in this problem,  is the only value and that is also fixed; hence 

you will either see a, you will basically see uniform illumination, it would either be dark 

or bright depending on which of these conditions is satisfied.


(Refer Slide Time: 15:42)





There is an important application of this Michelson interferometer. As I said in 

determining the wavelength of spectra; but before that there is one important question 

one needs to answer. Suppose there are, your source of light has two wavelengths which 

are very close to one another; for instance the sodium line,  line is actually made up 

of two lines which are very close to each other in wavelength or frequency.


So, can this interferometer tell us that it is actually made up of two lines; that is the 

question of resolution of spectral lines. So, here I have assumed that I have this source 

which is marked as marked in red and it is giving out light. So, typically when we do this 
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analysis with interferometers, we assume that it is a coherent source of light and it is 

monochromatic; meaning that it has precisely one wavelength. 


But now I assume that it has actually two wavelengths; one is , other is . And I 

use  to indicate that the second one is very close to the first one. So, here is the 

statement that  is much less than 1 so, it is very small. Now what would I expect; if 

suppose I put this light through my Michelson interferometer and I plot the intensity, I 

expect something like this. 


So, I have shown the expected intensity as a function of the phase difference . So, there 

is this black line corresponding to the wavelength  and then there is this red line that 

you could see; where the intensity is plotted as a function of . So, this red line is for 

. So, the question is in practice, can you differentiate these two peaks, can you 

resolve these two peaks?
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The sodium vapour lamp is made up of two sodium lines  and  as it is called. What 

was noticed was that, these fringes which are drawn here; when  is 490 that is the order 

of the interference is 490, it is really very large order. So, when  is 490, these fringes 

disappeared and again they appeared when  became 980, this was something that was 
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observed. So, typically this distance between the two peaks increases with the order of 

interference .


So, remember that  is what we defined as this integer here. So,  would mean 0 th 

order fringe,  is the first order fringe and so on. This is simply because this 

distance between the peaks that is indicated here changes with the order and at some 

order the peaks coincide when the interference pattern is clearly visible that is such a 

thing happens at 980; whereas, at 480 it disappears simply because peak of one coincides 

with the minimum of the other. 
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So based on this a quantity called visibility was defined by Michelson himself. So, it is 

. You can convince yourself that, if you are using monochromatic light; 

then  is 0,  is some number you can scale it and take it to be 1. So, the visibility 

will be 1, the condition for 0 visibility is when as I said the peak of one falls on the 0 of 

the other; which means that, this condition is being satisfied.


If I know one of the wavelengths, let us say  is known and if I know that experimentally 

at  the visibility basically becomes small; in that case from this equation you 

can find out what is . And for the case of sodium lines, which come from sodium 
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vapour lamp; the  is of the order of 0.0006 micro meters. So, this tells you the two 

different lines that make up the sodium  lines,  and  lines ok. So, it is called the 

sodium doublet.
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Now, let us look at the Fabry Perot interferometer. So, I have this incident beam which is 

coming from the lower left end. So, the core part of the Fabry Perot interferometer is this 

etalon, which allows transmission. So, the incoming beam gets transmitted into the 

etalon and we assume that the material inside is Air. So, the fraction that is got 

transmitted is  and at some point. 


So, it goes and hits the top surface and at that point a part of it gets transmitted outside 

and the part gets reflected back inside. And the part that gets reflected back inside, again 

gets reflected from the lower end of the etalon and again it gets reflected from the top 

end of the etalon and so on. So, adjusted that, transmission is possible only from the top 

end and not from the lower end.


Then what you will see at the output end or from the top end is, multiple beams that are 

coming out; each one is transmitted partially, partially transmitted beam. Of the initial 

beam, a fraction  is transmitted into the etalon and of that  is transmitted out. So, I have 

 that goes out and of the  which has entered a part  is reflected back. So, I have this 
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 fraction which is reflected back. And now it is again reflected back from the lower end 

at this point.


And hence the component here would have  two, it has suffered two reflections 

and one transmission. So, that is  and when it reaches this point here there is going to 

be one more transmission. So, it gets transmitted by a factor . So, that is going to be 

. There are these beams that come out from the top end and these are going to 

interfere. The crucial point to note here is that, each of these outgoing beams here, they 

maintain a constant phase difference with respect to the other, with respect to the 

neighboring ones. 


Now if I experimentally want to see this interference pattern, all I need to do is to put in 

some converging lens, a convex lens maybe and then put in a detector, then you can 

converge all these beams to a point and see the net result.
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So, I have just taken the first two of them here. So, this is the incoming beam and of 

course, it goes through, gets reflected at point  and there is a part that gets transmitted 

and goes through point  and so on. And the reflected part again gets reflected at  and 

then there is a part that gets transmitted at  and so on; two neighboring beams which 

are coming out of the etalon. 
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Now what is the path difference between these two neighboring beams? So, you can 

easily see that the path difference will be this part  and you need to subtract 

this  and it is also easy to realize that these two quantities are exactly equal  

and .
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So let me indicate my path difference as  again . So, I have drawn this 

figure once again here, this triangle here  and the line read line  together form a 

right triangle. And from there we can define what is  and that is simply ; remember 

 is the distance between the top and lower portion of the etalon. Hence  is simply 

.


And so, from here I can write out an expression for  that will be . Now let us 

look at this triangle , the triangle at the top. From here I can write . So, here 

notice that the angle at point  is actually theta same as the angle at . So,  has two  

in which case this will be . So,  will then be equal to , that is opposite divided 

by opposite side by hypotenuse and hypotenuse is . 
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And  as you see is this horizontal line. And to write it in terms of known parameters 

I can look at this triangle once again . And from here you will see that  is 

simply equal to ; once you substitute for  that is . 
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Finally the expression for  is equal to ; this is the path difference or the 

optical path difference. If I had taken the material inside the etalon to be of refractive 

index , this would have been . With this the phase difference is 

; but there is a catch here. So, this is a phase difference only between two 

of the beams, I mean what we have obtained is just the phase difference between two 

beams. 


So, there are other beams, if you assume there are  number of beams, you will have  

phase differences with respect to the first one. So, we need to take all that into account. 

But fortunately you do not have to work out the phase difference between the first beam 

and every other beam. The successive beams, you take any two beams; they will always 

have the same phase difference which we calculated.


So, which means that all we need to do, to decide if a particular point is going to have a 

bright or a dark fringe is to accumulate these phases. And look at what is the net effect of 
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all the beams interfering with the phases going like with respect to first one, you have a 

phase , the next one would be twice that, thrice that and so on.
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So, all I am going to do is to sum the interfering amplitudes. So, the amplitudes are ; 

that is like taking oscillatory solution and  as we had taken. So,  is , so this quantity. 

So, that is the amplitude. And the second one as you can see is  and the third one is 

; next one is  and so on; where  is . 


So, remember the  is the fraction of beam that is transmitted and  is the fraction that is 

reflected. So, what we need to do is to sum all these amplitudes, sum all these waves; 

keeping in mind that, each one of these waves which you take the first one with assume 

that has zero phase and the next one will have a phase , the one after that will have 

phase  and so on. And phase  is what we just now calculated.


So, we can say that this is equal to phase difference . So, in that case here is the 

framework. So, I want to add all the amplitudes. So, it will be  that is the first term; 

second one will maintain a  phase difference with respect to the first. So, you see a 

phase difference of . Third one will maintain a phase difference of  with respect to 

the first one. So, you see this  here and so on, you will immediately realize that this is 

simply a geometric series. 
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And if I have a geometric series of this type;  and so on; so I want to sum 

to infinity. In that case and of course, assuming  is much less than 1; otherwise it may 

not even converge. In that case, the sum, the infinite sum of this geometric series is 

simply ; you will get this sum for the sum of the interfering amplitudes. 
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The transmitted intensity will then be equal to  or it is equal to . So, calculate 

that, that is going to give you this relation.  you can take to be the intensity of the 
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incoming beam, it is a constant and with simple manipulation you will get this result. 

You will notice that there is the , crucially that is where all the phase information 

is located. You can look at how  that is a transmitted intensity, behaves as a function of 

. 
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And this is how it is. It is not easy to realize from this, but it is very useful if you plot this 

function. So, if you plot this function what you will notice is that, for very small values 

of , most of it is transmitted; so which means that the reflection is very less. But what is 

very crucial for our purpose is that, if you increase  to very large number something 

like  becomes like  for instance and  could be something like 0.9 and so on. 


Then the curve becomes very sharp. So, as  increases, you get this very sharp peaks and 

remember that  is a number between 0 and 1. So, as  tends closer and closer to 1 this 

peaks become very sharp.
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So, the transmission intensity for larger shows very sharp peaks. Now it is useful 

because, if I can resolve transmission intensity peaks here; I can find out the values of . 

And if I know the value of , I can actually plug it in this equation for phase difference 

and use it to determine the wavelength of an unknown light source, to a very good 

accuracy.


When we say that I can resolve these peaks very well; that means that, I assume that 

there is some measure of spectral resolution that is possible. So, if I have to measure the 

value of wavelength of an incoming light, I should be able to measure these, differentiate 

these peaks quite precisely. And how well I can do that is given by what is called the 

resolving power of the Fabry Perot interferometer. You can use both these Michelson and 

Fabry Perot interferometers as a means for determining wavelength of an unknown 

source of light. 
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