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Simple Harmonic Motion: Problems 

 

Welcome to the 5th module in this 1st week. So, if we have to summarize everything that 

we did in the last four modules we initially started by looking at a simple experiment of 

the pendulum and we sort of deduced that at least for the case of small displacements about 

the equilibrium position the restoring force is proportional to displacement and there was 

the negative sign and from there we went on to get an equation of motion and once we 

know the equation of motion we were able to deduce the time period of oscillation. 

And then we also saw that we can solve the equation for displacement as a function of 

time and once we know the displacement we can also find the velocity and acceleration, 

and we also saw that there were systemic relations between displacement and velocity and 

acceleration. And the last part of it was we computed the potential energy and kinetic 

energy of the oscillating system while each of these components the potential and the 

kinetic energy were individually time dependent, but the total energy was independent of 

time. 

So, again that is not surprising given the fact that when we initially model the system we 

did not consider dissipation as a possible avenue for energy to be dissipated. So, we have 

a system which is ideal in the sense that it does not dissipate energy. So, we will look at 

adding realistic effects like dissipation in the subsequent modules. So, to conclude this 

week we will go through a set of illustrative problems. 
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So, let me begin with the first problem which is a tube, which is in the shape of U as you 

can see in the figure here and originally in this tube the water let us say was there at this 

level the height of the water is same in both the arms of this U tube. But when let us say I 

depress the water in one of its arms like this by an amount equal tox, the water in the other 

arm rises by an amount as well.  

So, that the net displacement here would be 2𝑥 the difference between the level of liquid 

in both the arms after I depress it. And once I leave it, it’s going to oscillate up and down 

and of course, because of dissipation finally, it will come back and settle at the equilibrium 

position which is this. So, now, the question is what is the period of time period of 

oscillation for this case? To do this we will need to we will need few other parameters let 

us assume that  𝐿 is length of the liquid column, that is this entire length starting from here 

to here. So, this is length if you sort of make it horizontal and let us also assume that area 

the cross-sectional area of the tube is 𝐴. 

Let us assume that this liquid has density 𝜌. So, this is density of liquid in U tube. So, I 

would like to know what is the time period of oscillation in the system if I set it to 

oscillate by depressing the liquid in one of the arms. So, the question that you will have 

to answer is where is the restoring force coming from. So, clearly when the liquid is at 

the same height in both the arms of this U tube there is no net restoring force, but when I 

depress it in one of the arms the net restoring force comes from the liquid which is 



excess in one of the arms basically this. So, the weight of that liquid essentially provides 

the restoring force. 

So, what I would first like to know is what is the weight of this column of liquid. So, that 

would be 𝜌 which is the density. So, weight would be 𝜌 which is the density so, density is 

mass divided by volume. So, I can get mass if I actually multiply this by volume. So, 

volume would be cross-sectional area multiplied by the length of the excess length of the 

column which is 2𝑥g. 

So, this is the weight of this region of liquid, now this will have to be equated to mass of 

the oscillating part of the liquid. So, I would write  𝑀ẍ  =  − 𝜌𝐴2𝑥𝑔 So, what is the mass 

of the entire liquid that we have here let me write it out here. So, that would be; so the 

mass of the entire liquid that we have here would be again 𝜌 which is the density multiplied 

by the area of cross section multiplied by the total length of the liquid column. 

So, if I substitute here I have 𝜌  × 𝐴  × 𝐿  × 𝑥̈ = - 𝜌 𝐴 2𝑔 × 𝑥 and of course, I can cancel 

off several things here. So, 𝜌  and 𝐴 would be cancelled off I would get 𝑥̈ =  - (2𝑔/𝐿)  × 𝑥 

and by a small rearrangement this could be written as  𝑥̈  +  (2𝑔 /𝐿 )  ×  𝑥 =   0. 

So, clearly the equation that you have obtained to represent the oscillations of this liquid 

column looks like are familiar simple harmonic motion equation except that I need to make 

the identification that ω2 which is the of the angular frequency is equal to 2𝑔/𝐿 . And if 

ω2 is 2𝑔/𝐿  its straightforward from here onwards to find out the time period that is 

4π2/𝑇2  =  2𝑔/𝐿 . 

So, now, you take this equation and rearrange and get the value of time period. So, if you 

do that time period will be equal to 𝜋 ×√(2L/g) 

and I leave it as an exercise for you to check if the right hand side of this equation has 

dimensions of time. So, let us now go the next problem. 
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So, this is a problem of a mass in the form of a let us say a ball solid sphere of mass 𝑀  

which is tied between 2 rigid supports by use of a string. And we shall; so, if you pull the 

mass 𝑀  up and leave it; it would start oscillating this is something that you can easily do 

with the string and a mass tied to it. So, you will indeed see oscillations happening. So, the 

question is what is the time period of oscillations? And to do this we will have to make a 

few simplifying assumptions. So, we will one of the assumptions we will make is that the 

oscillation precisely takes place only in the  𝑦 direction. 

So, there’s no component of oscillation or dynamics in the direction perpendicular to the 

vertical so, entire oscillation is in 1 dimension in that sense. And of course, we have already 

taken to be, we have already taken 𝑀 to be mass of this block and let us say that I am going 

to pull it up and leave it and  𝜃 is the angle at which I am going to leave it and so this is 

our equilibrium position the point at which nothing happens you do not do anything to it 

nothing happens to this block. So, that shall; that will define our equilibrium position and 

with respect to the equilibrium position this will be the variable 𝑦. 

So, that would be our displacement and important thing for us is there is tension 𝑇 in the 

string. So, 𝑇 is the uniform tension in the string and we shall also assume that 2𝐿  is the 

entire length of the string and 𝑀 of course, is mass of the particle ok. So, now, when I pull 

it up let us say by an angle theta. So, there is this tension which is directed in these in this 

direction and we will we are going to resolve this tension in the perpendicular and 



horizontal component. So, if this is theta and this is also theta; so there is going to be the 

horizontal component of tension which will be 𝑇 𝑐𝑜𝑠 𝜃 in this direction and 𝑇 𝑐𝑜𝑠 𝜃  in this 

direction as well. 

So, because the magnitude of the tension that is opposing one another in the horizontal 

direction is equal and opposite, the implication of this is that there is no net motion of the 

particle in this direction along the horizontal. So, the only degree of freedom or the only 

direction in which the particle is going to move is up and down. Now, what about the 

component of tension along the vertical. So, there will be due to this side there will be a 

T sin 𝜃 here and another  T sin 𝜃 from this side. So, the net downward force due to tension 

is 2T sin 𝜃. So, this is the net restoring force. 

So, in this system the restoring force is provided by the tension in the string, if there is no 

tension in the string there is no restoring force and there will be no oscillations. So, what 

we have done is to calculate the magnitude of this restoring force which is  2𝑇 sin 𝜃 So, 

now, I can write the equation of motion. So, the equation of motion will be  𝑀ÿ that is 

equal to  −2𝑇 sin 𝜃 and now I need to replace  sin θ by y/L which you can figure out from 

basic definition of sine function. So, given all these now I put it back in this equation. So, 

I will have  Mÿ  = −2T/𝐿  

And I can rearrange this equation, so that will give me 𝑦̈ + (2𝑇/𝑀𝐿)𝑦 = 0. So, once again 

what we have obtained is an equation of motion that looks very similar to the identical to 

the equation; generic equation for simple harmonic motion. So, from here I can 

straightaway deduce what is the time period. 

So, here the  ω2 the  of the angular frequency will be  2 𝑇/ 𝑀𝐿 and since we know that  

𝜔 =   2 𝜋/ 𝑇 we can substitute this here in the equation for 𝜔 and rearrange the terms. We 

know that  𝜔 is the angular frequency which is defined as    2 𝜋/𝑡 because I am using 𝑇 

for tension. So,  𝑡 is the time period and this is the time period that I want to find out. So, 

if you substitute  𝜔 in this equation and do a simple rearrangement we should be able to 

get this  𝑡 which is the time period is equal to    2𝜋√𝑀𝐿/2𝑇 And again I will leave it as 

an exercise for you to verify that the right hand side of this equation does indeed have the 

dimensions of time. 



So, with this; so we have done two problems where we computed the time period of the 

system. So, if you look at the sort of algorithm that we have been following you need to 

identify where the restoring force is coming from in the case of liquid in a U tube it comes 

from the excess length of liquid which is in the case of liquid in a U tube it comes from 

this excess column of liquid which provides the restoring force, and in the case of a mass 

tied through a string to rigid supports it comes from the tension in the string. 

Once you identify the restoring force you write the equation of motion and once the 

equation of motion is in the standard form corresponding to the standard simple harmonic 

motion directly you can identify the angular frequency from where we can write down the 

time period. So, this recipe can be followed for pretty much most of the simple problems 

of this type. 
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So, in this problem we will deal with the case of particle of mass  𝑀 that is executing 

oscillations find the turning points. So, let me first explain this problem through an 

example, suppose consider the example of a pendulum. So, this is its let us say the normal 

equilibrium position and when you try and give it a push you are oscillating it and so it 

starts from the equilibrium position goes to one end and turns back. So, this position here 

where it turns back is called the turning point. So, it goes in one direction and turns back 

and again it goes in the other direction and turns back. So, again somewhere here maybe 

so, this is; these two are the turning points. 



So, for an oscillating system like this there are two turning points; one on either side of the 

equilibrium position. So, equilibrium position is somewhere in between the two turning 

points. Irrespective of which system which oscillating system you consider there would 

always be two turning points for instance if you think of this as a mass that is oscillating 

from a spring which is tied to a rigid support like this. 

And let us say that this is its equilibrium position and once you give it some oscillation 

you are giving it some energy and consistent with the total energy that you have given it 

would go up and down and let us say that this is the point where it goes up and this is 

where it goes down. So, these are the two turning points it goes up turns back and comes 

down and similarly it goes below the equilibrium position again rebounds back. 

So, these are the two turning points. So, for every such oscillating system you can even go 

back and look at the two problems that we just now did both the case of liquid in a U tube 

and a mass tied to a string and given an oscillation in all these cases there are two turning 

points. So, I would like to find the turning points. 

So, to do that we can do that in general without referring to any one of these problems and 

that is because we know that for any oscillating system potential energy is given by   

(1/2)𝑚ω2x2 So, just to remind you that   𝑥 which is displacement as a function of position 

I have indicated that  𝑥 is a function of   𝑇 Similarly, kinetic energy is equal to  (1/2)𝑚v2 

again   𝑣 is the velocity and velocity is also a function of time. So, in general both kinetic 

and potential energies are functions of time. 

So, the total energy   𝐸 would be equal to   (1/2)𝑚ω2x2 + (1/2)𝑚v2 Now, from this 

how do I find out the turning points? So, you should carefully note what happens at the 

turning points. So, at the turning points the particle let us say if it is a pendulum it goes in 

one direction stops momentarily and turns back. So, precisely at that point the velocity is 

0. So, it is reasonable and correct to say that at the turning points velocity is 0. 

So, all I need to do then is simply plug in that velocity is 0 and find the value of position 

𝑥. So, if I put in that velocity is 0 in the equation for energy that I had written above I will 

get   𝐸 =(1/2)𝑚ω2x2 and since  𝑣 is 0 that term does not come here and now I need to 

find the value of 𝑥. So,   x2 = 2𝐸/𝑚ω2, this implies that   𝑥 = ±√2𝐸/𝑚𝜔2 

 



and to indicate that these are turning points let me call It   𝑥𝑇here. 

So,  𝑥𝑇is the position of turning points as you can see there are two turning points 𝑥 =

±√2𝐸/𝑚𝜔2 

 on either side of your equilibrium position if your equilibrium position corresponds to 0 

in your scale there are two turning points one on the positive and other on the negative 

side. 

So, you should note the feature that the turning points depend on energy. So, turning points 

is proportional to √E. So, more the energy you give the turning points would be farther 

away. So, clearly if you give a strong push to the pendulum it is going to go far before it 

turns back which is what is the lesson that we learn from this equation as well. And also it 

tallies with the physical intuition that more energy the particle would go further would 

oscillate with larger amplitude before turning back. 
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Let us look at a slightly different problem. So, here I have a mass  Mor block of mass  M 

which is supported by two springs and the springs have different spring constants  k1 and 

k2. Now, if I give it a little bit of a push what would be the time period of oscillations that 

it would execute. So, how do we solve it? The principle here is that the extensions 

produced by both the springs will be equal. 



Imagine suppose if they were not equal if the one spring produces a different extension 

from the other then the block would not stay horizontal, but would have some tilt to it. So, 

we avoid that situation in which case the extensions produced by both the springs will be 

same in which case the total restoring force would simply be the sum of the restoring 

forces. So, I could write it as 𝐹 =– k1𝑥 − k2𝑥, this will be equal to – (k1 + k2)x. 

So, from here on its very simple we have identified the restoring force, from here I can 

straight away identify what is  ω2 which is my angular frequency is  (k1 + k2)/𝑚 from 

which it is straight forward to write an expression for time period the time period will be 

2𝜋√𝑚/(𝑘1 + 𝑘2). So, this gives us an expression for time period of this system. 
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The next problem is a variant of the earlier problem we had seen. So, earlier the two springs 

were sort of connected in parallel, but now they are connected in series one below the 

other, and again you have mass  𝑚 which is being supported by these two pendula from a 

rigid support. So, I will not do this problem in full, but I encourage you to try it yourself 

and the key idea here is that the restoring forces on the two springs would be the same. So, 

if you use this principle you should be able to get the get the time period of this system. 

So, I am going to leave it for you to do this problem. 
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So, in this problem we are looking at two oscillations which are perpendicular to one 

another and the solutions are given here the question is what is the superposition of these 

two oscillations? And I would like to know the pattern of oscillation in   𝑥, 𝑦 plane. So, the 

way to do it is; so as usual we want to eliminate time from these equations and plot the 

oscillation and as usual let us expand the first equation if I do that I will get  

√2 cos ω t cos π /2 − sin ω t sin π /2 and here cos π /2 = 0. So, the first term would be 

cancelled. 

So, what I have is  x(t)  is simply equal to  −√2 sin ω tand  sin π /2 = 1 and of course,  

y(t) = 2 cos ω t from here it is very easy to do rest of the job  x/√2 = sin ω tand  y/2 =

cos ω tand if I square and add I will get (I missed a - sign here)  x2/2 + y2/4 = 1. 

So, clearly this is an ellipse as what we have got is a equation of; now, that we have 

obtained the sketch the dynamics in the   𝑥 𝑦 plane we can also ask the question what is 

the direction of motion is it going in this direction or is it going in this direction. So, that 

can be determined as well and to do that let us say at some particular time the easiest to 

pick is  t = 0 where is the position of the oscillating particle. So, at time  t = 0 all you 

need to do is to substitute  t = 0 in these two equations if you do that it tells you that at 

t =  0,   x =  0 and the value of  y =  2 because cos 0 = 1, so  y is equal to 2. So, this is 

the position of particle at t =  0. So, I have identified one position at t = 0, so I can put 

that. So, x = 0 ,  y =  2 will be this point. So, this is the point at t =  0. 



Now, I need one more point as well let me ask the question what where is the particle at 

t = π/2ω. So, you could take any other time and do it, but I have just chosen  π/ 2ω and 

if you do that plug in this value of    𝑡 in these two equations here and that would tell you 

that the value of   𝑥i s equal to   −√2  and if I put in   𝑡 equal to   𝜋/2𝜔 here in the second 

one it tells me that   𝑦 =  0 and where is this point this will be a point that is located here. 

So, this is the position at t equal to π/2ω. So, we are going from 0 to some positive value 

of time which means in that intervening time period the particle has moved from this point 

here to this point. So, the direction of motion is actually this. So, I need to erase this. So, 

now, I can put in the direction of motion. So, by choosing various values of time you can 

not only plot the pattern of oscillation in   𝑥𝑦 plane, but also obtain the direction of motion. 


