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Lecture – 45  
Waves in Optical Systems: Applying Fermat’s Principle 

Welcome to this second part of 10th week, we will not be studying optics in detail 

because optics in itself is a vast subject. So, instead what we are going to do is to simply 

confine ourselves to few simple things which we need. So, that we can understand how 

Waves and Oscillations as phenomena work in Optical System. 
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To begin with let me remind you of Fermat’s principle. So, the principle simply states 

that the actual path taken by the light is the one for which the optical path is an 

extremum. In the standard simple case of a homogeneous medium and light travelling 

from point  to point  its equivalent to saying in a sense that light takes the shortest 

path between those two points in this case it would be a straight line. 
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Fermat’s principle can be stated as the actual path between any two points is the one for 

which the optical path is stationary with respect to variations in the path. 
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Today we will apply Fermat’s principle to a little more complicated system mainly to the 

case of a thin lens I am going to start with the case of plano convex lens. 
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So, the lense is plane on one side and has a convex face on the other side. So, this 

distance here would define for me the thickness of the lens all you need is a circle of 

which this convex arc is a part and the radius of that circle which have denoted by capital 

 is the radius of curvature of this lens. Whenever this  which is the thickness of lens is 

much smaller than the radius of curvature then you call it thin lens. 

I am going to assume that a plane wave comes from the left side which will be our 

convention to assume this pretty much in most of the problems that there is an incident 

plane wave coming from the left side. And I am also going to assume that the medium of 

this Plano convex lens has a refractive index  and in general we can assume that the 

refractive index of the medium outside of this lens is equal to 1. 

Now, let us focus on a ray it should be at a distance  from the optical axis. So, the 

optical axis here in this case is indicated by this red line the origin of  axis coincides 

with this red line. So, this small  would define for me some arbitrary distance from the 

optical axis. What happens to this incoming incident plane wave after it passes through 

this plano convex lens? So, if your along the optic axis along this red line the ray which 

comes along this red line would travel and entire distance  inside the lens as you can 

see. 
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On the other hand the ray which is hitting the lens at a distant  from this red line would 

only travel part of the distance inside the lens there is this one part which would be 

traversed inside the lens and there is the other part which should be travelled outside the 

lens. 
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So, let us call this time , the time taken for the wavefront to travel this distance  inside 

the lens along the optic axis or the central axis and that time would be given by  

divided by ;  is the velocity of light;  is of course, the thickness of lens and  is the 

refractive index of the medium of lens. 

Now, what happens to the wave front that hits the lens at a distance  from this axis. So, 

what we want to know is how much distance does the wave front travel in the same time 

. You can take a look at this diagram which is nearly the same diagram that I have here, 

but I have try to focus on this particular ray which comes and hits the lens at a distance  

from the optic axis. 
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Now, from the geometry of this figure you can use Pythagoras theorem to write the 

following equation . So, that is the solution for  it cannot be a value 

that is larger than , if I keep the plus sign in the solution it would tell me that  will 

have a value that is larger than . Hence I will take  to be . 

Now, we make the binomial approximation. So, the binomial approximation is of the 

following types. So, if I have function of this type,  to the power half or in general I 

could consider 1 plus or minus  to the power half this will approximately be equal to 1 

plus or minus half into . It actually an infinite series which we are terminating at this 

point and this approximation would work only if  is much smaller than 1. this is the 

result that we want. 

So, the distance traversed by the wave front at a distance  from the axis inside the lens 

that is very important. So, this is the distance travelled by the wave front, but inside the 

lens its given by . In addition to this it also travels a certain distance outside the 

lens if we indicate this distance by,  So, the distance traverse by wave front outside the 

lens would be given by  plus some . 
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So, here I have essentially equated the times on the left hand side is the time taken to 

traverse the distance  along the optic axis and on the right inside here is the time taken 

to traverse some distance in the same time this is going to give me. So, if you remember 

 is simply some arbitrary point up till which our ray has travelled in time  value of  

depends on  depends on how far you are from the optic axis and also it depends 

quadratically on . 

Now, I can go back and draw figure here to indicate this let me show that in blue, so its 

going to look something like this. What is this tell us? It tells us that all the points which 

make the wave front they are at a distant  from this line that I have here and the locus of 

all the points has this  dependence. So, you could say that in three dimensions the 

locus of  is going to define for us as this sphere whose radius is going to be . This 

is also means that there is going to be a point of convergence at the centre of that sphere. 

So, in other word if I had an object which is placed at infinity and there is an incoming 

wave front which you assumed to be a plane wave its hitting this plano convex lens, 

what this analysis tells us is that all the rays would converge at this point whose radius is 

given by . 
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So, power in this case would simply be  which is equal to 1 by the focal length. So, 

this is gives as an estimate of power of a lens which is its ability to bend the incoming 

beam of light. 
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Now, we will redo similar problem, but slightly differently explicitly using Fermat’s 

principle. So, its not a lens what I have is a surface a refracting surface. So, the surface 

itself is given by this  and we have an object let us say at position  here and  is 
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any point such that  together form a straight line. Of course, given that  is the 

some object or some position where would this  imaged after refraction on the other 

side of this curved surface. Capital  is the radius of curvature of this curved surface. 
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Now, let us start by looking at this triangle  using the cosine law of triangles. I can 

write the following equation for  you can use cosine law of triangles and write this 

equation. Before I do anything with these expression I should point out that we will be 

working in the regime where  is small. 
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So, this is an approximation in which we will work with and this sort of approximation 

where the rays or close to the optic axis is called paraxial approximation in optics. So, 

now I can write  as follows now this expression can be simplified, I am once again 

going to use a binomial approximation here, we have an expression for  now. 
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And you can do a very similar calculation to find out . So, I will not do that and 

directly write the result, but its fairly straight forward just follow the recipe that we just 

adopted. 
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So, I have  and  the total optical path length would be. So, the path length  as 

you can see happens in a medium where the refractive index is  and the path length  

takes place in a medium where refractive index is . 
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Now, I have collected all the terms together added them and this is my expression for 

optical path length . So, I want to find out now  and set it equal to 0,  is the radius 

of curvature capital . So, it is not equal to 0. So, what could be 0 or only these two 

things; one is it is possible that  could be 0 or this entire expression within the square 

brackets that could be 0. 
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So, theta equal to 0 gives me a straight line path and there is only one possible straight 

line path. Now, the other way by which  can be 0 is when this quantity within the 

square brackets is 0 this is what we have obtained from the condition that  should be 

equal to 0. 

If I designate this  to be some  or the distance of the image from the point  in that 

case all that this equation tells me is that many possible paths are allowed. So, the point 

here is that any path of type  is allowed provided of course, I identify  with  the 

distance of the image. 

So, typically these kind of equations follow some convention for instance if you go back 

to this figure that we have here the distances to the left of  generally take a negative 

sign and the distances on the right of  point  would take a positive sign. So, if I 

actually apply this convention here this equation could be rewritten as. 
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Once again you might recollect that this is simply equal to the power of the lens. 
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So, now I have read on the figure slightly differently. So, that we can obtain the same 

result using Snell’s law of reflection. So, there is a beam that goes from point  to  and 

gets refracted and possibly converges at point I there are various angles it defined , ,

 and there is also this perpendicular which is of height . So, what is of interest for us 
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are these three distances  which is the distance from point  to  and the distance from 

 to  which is called  and then there is radius of curvature which is  in this diagram. 
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At the refracting point I should be able to write an equation of this type this is simply a 

statement of law of refraction, I am going to assume that  and  are small in which 

case. So, this is what is called the paraxial approximation. So, this line which goes from 

 to  is the normal at normal to the curved surface at the point  hence this would be 

our  and similarly this should be my . 

So, if I look at this triangle  the sum of the angles of this triangle should be 180 

degrees this equation would simplified to the following . Now, let us also 

look at the triangle  sum of all the three angles is 180 degrees this would give me an 

expression for  which would be . 

x P O

P I y PC

ϕ1 ϕ2

C S S

ϕ1 ϕ2

OSC

ϕ1 = α1 + β

SCI

ϕ2 β − α2



(Refer Slide Time: 16:22) 

 

Remind yourself that we are looking at an approximation where all these angles are very 

small in which case the  can be approximately written as . So, I just 

expand  and consistently apply that all the angles are small enough and then 

every time you have a  you can replace it by .  

Again remember that we are working in small angle approximation in which case this 

distance  is so small that we can ignore the distance and take this distance  and  to 

be distance  to be  self. So, taking  small would correspond to again thin lens 

approximation  and  are so close that we can ignore that small difference and take the 

distance between  and  to be  itself.  

Now, by the same token I can write expressions for  as well that would be 

. Now I have expressions for  and  I simply need to substitute 

in this equation. This is the expression that I get when I substituted back in this equation 

which is the law of refraction. Now, by simply rearrange this equation I can write it in a 

more suggestive form. 
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So, this is the final result I get, but again to put it in a form that is useful for us let us call 

this distance  to be , but remember that any distance which is to the left of  is going 

to get a negative sign. So,  will be  and  will be . 
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So, this is exactly the result that we just got earlier on. So, we got it by two different 

methods; one is by actually applying the Fermat’s principle and other by using the law of 
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refraction it should not be surprising simply because the law of refraction itself was 

obtained by using Fermat’s principle. 

So, it looks like everything is consistent for us and the quantity here on the right hand 

side  is again simply equal to the power or  which is the power of lens. You have 

light beam going from one medium to another medium characterized by refractive 

indices  and . So, we have  in the denominator in instead of  that we 

had earlier on.  

Now, in the next lecture we will try and put together all these results to obtain equation 

for thin lens.

μ2 − μ1
R P

μ1 μ2 μ2 − μ1 μ − 1


