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Lecture – 44 
Waves in Optical Systems 

Welcome to the 10th week, we look at Waves in Optical System or in other words the 

light waves or electromagnetic radiation. Thanks to Maxwell and many others we know 

that light is a form of a wave. Let us see if we can describe propagation of light and 

maybe more common properties of light for example, reflection refraction by just not 

worrying about the wave form, but simply looking at it as ray that travels from point  to 

point . 

So, if you take this view point we need to decide first in what limit of wave would this be 

valid and how are we going to go about working with this limit. This sort of description 

works well in what is called the limit of ray optics. 
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And this corresponds to taking the limit that wavelength of light or wavelength of the 

waveform is small or it tends to 0. 
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Let us consider a source of light here from point  and let us say that I have a circular 

aperture given by this and at the other end I have a screen here. If  is any source of light 

now question is what is it that we will see on the screen? And in this case it will depend 

on dimension of this aperture. Suppose this aperture is small enough in such a situation 

the light from  will of course, go like this, but we are unlikely to see a very clear 

boundaries.  

So, this effect that we see where you see that there is some light even in a region which 

is expected to be dark happens due to what is called diffraction effects. And, this 

diffraction effect is essentially an effect that arises because of the wave nature of light. 

So, we need to go to a limit where we would not be able to see the effects of diffraction. 

In other words the conclusion is that you will see effects of diffraction whenever  is 

larger than 0. So, in the limit of  even if you bring in make the aperture sufficiently 

small you would not see diffraction effects. In that case where we can very clearly see 

the sharp distinction between the region that is lit up and the region that that falls in the 

shadow below this point  on the screen you do see light and above  on the screen it is 

dark. 
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So, in this case it goes from  to  and of course, on the other side it would also go from 

 to let us call this point . So, between  and  and  you do see light and above  

below , it is very dark. In that case we can describe our light wave using ray diagrams 

basically lines like the ones that I have drawn here. So, this is the regime of what is 

called the ray optics or geometric optics. Every time a wave of light goes from point  to 

point  we can just represent it as a line going from point  to point . 

So, the question is how do I know that light that starting from point  takes this 

particular path and this question is answered by what is call the Fermat’s principle. 
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We need to state the refractive index let me assume that light travels in a medium with 

refractive index . Let me denote by  the distance travelled by light in a medium with 

refractive index  if  is the distance and  is let us say the speed of light, then of 

course, speed of light in the medium with refractive index  in that case I can write the 

time taken to travel this distance  as. So, I will simply use the definition of refractive 

index to rewrite the velocity of light in the medium that is characterized by refractive 

index . 

Now, I have assume that light travels in a medium that is characterized by refractive 

index  and there is no change in the medium. We can generalize this idea further by 
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saying that light probably travels in a series of different media each one characterized by 

a different refractive index. 
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So, let me denote by  the time taken to reverse distance . So, generalizing this 

formula I can write it as. So, each one of these indices represent a different medium and 

there is a change in refractive index. So, that is characterized by . 

So,  is the distance traveled in a medium characterized by refractive index ,  is 

the distance traveled in a medium that is characterized by  and so on. If there is a 

continuously changing media we can replace the summation by an integration. In which 

case the distance traveled which is denoted by  will be given by. 
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So, I have this sort of formal expression for the time taken by light to travel from point  

to point  in this picture of ray approximation and between point  and point  

depending on where you are the refractive index does change. So, that is taken into 

account by this  which depends on . Fermat’s principle can be mathematically written 

in the following way I have written it here for you. So, the variation of this integral is 0.  

So, the physical content of Fermat’s principle is that if you have chosen two points and 

light travels from  to  you could consider many possible paths here through which the 

light might possibly travel from  to . And, the one it actually takes is the one for 

which the variation of this quantity equals 0. Very loosely speaking its equivalent to 

saying that the time taken to go from  to  is the least, this quantity  is called the 

optical path length. 
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So, here is Fermat’s principal written out for you. The actual path between any two 

points like  and  that we had drawn in the previous slide is the one for which the 

optical path length is stationary. So, you would see that  represents the optical path 

length. So, this quantity is stationary with respect to variations in the path. So, the light 

actually takes that path for which the optical path length is an extremum. 
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So, Huygen’s theory sort of provides this bridge between light as a wave and light as a 

ray. So, his idea is that light can be represented as a wave front; I have this point  which 

is a source of light and if that is a source of light. So, light is going to travel in all the 

directions outward from this point . 

Now, you can ask the question what is the locus of those points which have the same 

face after all whichever direction light travels around  its traveling with same speed. 

This locus of these points with same face have travelled a distance equal to  . 

Now, this is a wave front for us and specifically in this case it would be called a spherical 

wave front the light coming out of point sources of light would define a spherical wave 

front. 
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On the other hand if I had a source of light which is linear. So, all the points with the 

same face here have travelled the same distance and the locus of such points they form a 

cylinder. So, this is called a cylindrical wave front and if you are looking at say a point 

source of light which is really very far away, but if it has traveled sufficiently long 

distance and you are looking at a small portion of that. 

And that for example, something like this would look like a plane wave. So, that would 

be called a plane wave front for instance the sunlight which is reaching us from really 
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long distance. So, in such cases you could assume that you are actually observing a plane 

wave front. 
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So, let us say that I have this plane wave front at some time  maybe it originally started 

out as a spherical wave front, but at the point where I am observing it what I see is a 

plane wave front. Huygens idea is that each point on this wave front acts as a source of 

secondary wavelets and let us say you take one point here its a source of secondary 

wavelet which is going to be spherical. 

Now, you take the point which is very close to this point draw a similar wave front which 

came out from the second point and so on. So, if you put all of them together what you 

get is a new position of the wave front. So, essentially you transported a wave front at 

time  to let us say at some time  one. 

The central and core idea is that every point on a given wave front is a source of new 

wavelets and if you join the points with same face for this secondary wavelets you are 

going to produce a new wave front and you moved your wave front from old position to 

new position and you can continue this process. It requires a little more involved 

exercise including wave phenomena to explain why it moves forward rather than 

backward. 
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Let us say that I have some surface here which I call  and there is an incoming wave 

front like this. So, I consider secondary wavelets and I can move it let us say to this point 

which is essentially the locus of all the secondary wavelets with the same face and here I 

assume that the media are different at the top and bottom. So, at the surface a reflected 

component of light emerges and that would go something like this. 

So, in other words you have a light wave that is coming let us say in this direction I have 

drawn the arrows here, it gets reflected at surface  that is a change of media there and 

finally, the reflected component goes in this direction that I have shown here. And by the 

same token one can also explain refraction, so this is for the case of refraction. 
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So, in the evenings the light travels longer distance to the atmosphere hence if this is the 

ray that is coming from the sun it actually bends when it encounters the atmosphere and 

reaches our eyes. And, from our perspective it would look like the sun is somewhere here 

whereas, the more correct position of the sun is somewhere way below this point and this 

is because of refractive effects of the atmosphere. 
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Let us say that I have a source of light  and from here I have a diverging beams which 

go out as spherical waves and after let us say it travels over sufficient distances it 

becomes plane wave. So, if you put in optical devices you can make it finally, converge 

at some other point here and of course, the converging wave front might look like this. 

The point you note is that all the points along the wave front let us take for example, this 

wave front all the points along the wave front have traveled the same optical distance. 

So, in other words they are at the same optical distance from the source. So, the path that 

light takes from let us say point  to  can be accounted for by Fermat’s principle and to 

map this wave front we basically use Huygens idea of secondary wavelets. So, you can 

move your wave front forward using secondary wavelets. Now, let us use all this 

machinery to account for reflection and refraction. 
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So, what we have is this surface  there is an incoming incident wave which comes in a 

sense from the left of this point  that I have and gets reflected at this surface  and you 

have this reflected component. And, at this point  where the reflection takes place I 

have a normal drawn and with respect to that perpendicular or normal there are two 

angles defined; one is angle  which is call the angle of incidence which is the angle at 

which the incident ray hits the surface . And, there is another angle defined which is  

this is the angle at which there is an outgoing ray the reflected ray. 
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So, this entire action is taking place in a plane that is perpendicular to  because suppose 

if I take some other point let us say  and I connect these points object  to  and  to 

. So, these distances will actually be larger than  and  purely from the geometry of 

what we are looking at and the only time this travel distance I mean the optical distance 

will be smallest is when  is in a plane that is perpendicular to this surface . So, let 

us apply Fermat’s principle to this problem I need to know what is the time taken for 

light to travel from  to  and from  to . 
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So, to begin with I need to know first the distances  and  and from the geometry of 

figure I can calculate both of them that would be , where  is the speed of light. 

 is equal to ; let us give it a different name  instead of . 
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Now, Fermat’s theorem tells us that . So, substituting expressions for  

and  that we just got in here I will get and this is to be say  and of course, there is 

a minus sign here when we differentiate and this is going to give me the following 

equation that. Now, if you look at these expressions on the left hand side and right hand 

side of this equation you will notice that this quantity here is simply equal to  and 

similarly what would be ? That is precisely what I have here on the right hand side 

of this equation. 
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So, Fermat’s principle in this problem tells us that  of course, this is a 

problem with multiple possible solutions, but if we take the simplest possible solution 

this tells us that  is equal to  angle of incidence is equal to the angle of reflection. So, 

this is one of the commonly stated laws of reflection. 
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Now, let us do a similar kind of calculation for refraction here again I have this surface 

and presumably the media above and below the surface are different characterized by 

two different index of refraction. 

So, here I have drawn my setting the point  is where refraction takes place is given by 

 and at that point we draw this normal and define angle of incidence and an angle of 

refraction. Now, the question is what does Fermat’s principle tell us in this scenario. 
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So, time to traverse  that would be given by I need to calculate the time to traverse  

let me write down that expression in the expression I have divided it by . So,  is the 

velocity of or speed of light in the first media which is characterized by refractive index 

 and  is the speed of light in the second media which is characterized by refractive 

index . So, now, I need to take the sum of these two times differentiate them with 

respect to . 
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So, apart differentiating this expression with respect to  this is what I am going to get 

this term here and correlated with this figure that I have it will tell you that what I have 

circled here in red is simply  sin of the angle of incidence this quantity and again you 

correlated with this figure you will notice that that is simply equal to  sin of angle of 

refraction. 

So,  would be  divided by speed of light and similarly  would be  divided by speed 

of light. Now, if I substitute these two quantities in this equation this quantity speed of 

light will cancel out and I would get the final form that. 
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So, this is the law of refraction. In the next lesson we will try and look at some more 

examples of this, but involving optical elements, we will see how we can map out path of 

array in the presence of say lenses mirrors etcetera.
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