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Lecture – 42 
Frequency Spectrum and Fourier Transforms 

Welcome to the 4th lecture, we are in the 9th week. This entire week we started with the 

Fourier series and we will continue with that. In today’s lecture we are going to look at 

two different things. 
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Let me begin by again flashing the same old slide that for a well behaved function 

periodic function we defined our Fourier series and it looks like what is shown here. So, 

you had the average part which is given by  and then all the oscillatory parts are taken 

care of by the sine and cosine term. 
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And let me write the Fourier series in a slightly different form which we did not quite 

use, but it is also a valid way of writing a Fourier series. On the right hand side I have the 

Fourier series expansion written in terms of the exponentials s and crucially you will 

see that it depends on this  here. I can see this function in the space of these s. So, 

the space of course, would be in terms of , ,  and so on and the amplitude 

corresponding amplitudes would be s; , ,  and so on. 

In general if I had some  that would correspond to an amplitude . So, I can plot , 

,  and so on the  axis and plot , ,  those values on the  axis. This is equally 

valid way of stating the same function . It is just that now we are we have 

transformed it in what would be called the Fourier space or frequency space because as 

you can see the  axis would now be made up of frequencies. So, it would have let us say 

,  and so on and here of course, there will be the values of  that is plotted. Let us 

go back to the problem that we did in one of the earlier lectures.  
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So, that was the problem of square wave. So, between the values of  lying between 0 

and , the square wave had value  and between  and 0 the function was  and then 

outside of this range between  and  it repeated itself. So, it is a periodic function. 

This is its basic periodicity and we calculated the Fourier series for this function, let us 

recall the result again. 

So,  has this common factor  and if you take that out then it is a series of sine 

functions and as I pointed out when we first derived this you will see that the 

denominator is actually increasing; it is 1, 3, 5, 7 and so on. So, the contribution of the 

terms with higher frequencies is getting lesser and lesser. Now, let us see it as a 

frequency spectrum.  

So, the  axis is going to be made up of these 1, 2, 3 and so on which are the numbers 

which are appearing here for instance these ones and I am going to plot the amplitude 

which is for the case of  the amplitude is , for the case of  the amplitude is 

 and so on. 
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So, here is my frequency spectrum plot when  you can see that I have drawn a line 

all the way up to  in  axis for the case of 2 it is of course, 0; but for the case of 3 it is 

. So, it should be one third of this height. So, let us say roughly it is somewhere here 

and again for  it is 0 and for  it will be one fifth of the height at . So, 

it is even smaller and so on and of course, at 6 it is going to be 0 again.  

So, what we have plotted is a frequency spectrum. With the information given here we 

can exactly reconstruct  again. Of course, we need the information about all the 

frequencies, we would just drawn for few of them, but if you have the information 

corresponding to all the infinite frequencies then you can exactly reconstruct . So, 

here is my function in the position space and here is the same function in frequency 

space. 
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Let us also look at another example that we did before this was for the case of string that 

is tied between two ends. The two ends are between 0 and  and we said that we will 

plug the string at the midpoint and it is going to display standing waves. So, we obtained 

the energies of the oscillatory system. So, this you can think of as your function in 

position space. Now, let me plot this in frequency space I am going to label this as  of 

course, then there will be , ,  and so on. 

And let us say that the energy in the mode corresponding to frequency  is  in which 

case let me say that would correspond to some point here and that is . You can see that 

most of the energy is concentrated in the fundamental mode and it also pictorially nicely 

tells us that all the even frequencies do not contribute any energy and the contributions 

from higher harmonics, higher odd harmonics really get very small very quickly. Let me 

say that it is a way of seeing the same function in Fourier space. 
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If  is written as a Fourier series like this what would  be? Simply multiplied by 

 on both sides and integrate it over time. You will see that on one side only when  

and  are equal would that be a non-zero contribution and hence we will get this result. 
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I am going to introduce slightly different variable let me call  as  instead of  

itself. So, let me also make that change here. So, all I have done is to simply substitute  

by . So, you can think of this as your fundamental frequency and all other frequencies 
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are some integer multiple which is why you have that  here. So, it is integer multiple of 

this basic frequency . Now, I am going to take the limit of . This will allow me 

to handle all kinds of functions even when they are not periodic. 

Now, what I am going to do is to substitute this d n in this expression for  that I have 

on the top. So,  is the one that comes within these red square brackets since  

involves the  I need to differentiate that  from the  that would occur in the 

definition of  and hence I have put  here; should not matter because it is simply a 

local  is simply a local variable or what would often be called a dummy variable. 

Now, let me take the limit that . So, when  becomes really large  becomes 

small  which is  and also notice that when  I can take the limits of these 

integrals within the red square brackets to be going from  to . So, they are going 

from  to . Now, since  goes to infinity that will change and  is going to become 

 we have this factor  here in this in the exponent here  times  you can take  

sufficiently large enough such that  is a variable which I would like to call . 

(Refer Slide Time: 10:34) 

 

Since I am replacing  by , now it becomes a continuous variable because  goes from 

-  to . So, in that case I can replace this infinite summation here by an integral over 
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. The quantity inside the red brackets would be our  let us separate it and write it 

out. In this case small  would can be written as follows that would be  to  

and of course, this is  times the exponential.  

The relation that you have on the left hand side tells you that if you integrate  over

 integrate over time that gives you  capital  which is the Fourier 

transform of .  
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So, the whole exercise can be restated as follows that. So, this you can think of as a 

Fourier series that is valid for continuous variables and a nice feature is that now you do 

not even require your function, let us say  to be a periodic function. So, you done this 

trick of saying that the function has infinite periodicity. These would be the general 

definitions for Fourier transform and in the literature you will find many different ways 

of writing the Fourier transform. There would be simplifications if you know some 

symmetry properties of the original function . 
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Suppose, you know that function  is an even function in other words  is equal to 

. If this property is satisfied in that case the sine part of this exponential will drop out. 

So, this is called the Fourier cosine transform. Similarly, if  is odd function by which 

I mean that  in that case you will get Fourier sine transform of course, I 

should correct this factor here this should have been . Now that we have all these 

definitions in place let us see what kind of results it gives for some typical cases. 
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My first example is what would be called the slit function. So, you can imagine that this 

rectangular form or the slit function is defined in time domain. I want to do a Fourier 

transform and look at the same function in the Fourier space or in frequency space. So, 

the function can be defined as , if  is lesser than or equal to  or maybe more 

correctly if modulus of time is lesser than or equal to .  

Now, to obtain the Fourier spectrum we simply need to use the formula that we just 

obtained for Fourier transform and before we do that I should also point out that this 

function will be 0 elsewhere. And  here is , but it is equal to  only in the narrow 

region where  is less than or equal to  and everywhere else the function is 0. So, the 

integral itself would go to 0. 
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And, this integral is again easy to do; you can take  out of the integral. So, I have 

substituted the limits now and it is easy to see what manipulation needs to be done. 
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If you would like you can just change the notation and call this  to be  in which 

case  would become .  
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Now, we can plot the Fourier spectrum. So, the -axis is  and  axis is of course, capital 

 and as ,  which means that  is 1 at  the value is  here and 

it is going to decrease on either side of 0. And, since we have already seen this kind of a 
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relation let me directly plot the function. Now, if you focus on this point. So, this is the 

point at which . 

So, you can ask the question when does  become 0. So, that would happen if  equal 

to . So, this value is  and similarly, this value should be  this you can take as one 

measure of maybe the width of your Fourier transform function. So, that is twice  or 

 for comparison I have shown the original function  here which is a function of 

time. You will notice that  is the width of our rectangular slit function. 

Now, when you look at the Fourier transformed function you see that the width is 

actually a function of , in this case it is . So, broader of function in time domain 

narrower it is going to be in frequency domain. It is not something very specific to this 

choice of function; slit function in fact, it is a more general truth. Let me now mention 

one physical application of this Fourier transform of a slit function. 
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The application is the single slit diffraction we will probably see it in little more detail in 

subsequent weeks, but let me just mention how Fourier transform is used here. So, the 

problem is the following we have a single slit that is shown in their diagram the width of 
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the slit is  and you have parallel beam of light coming from left hand side and we will 

assume that the wavelength of light is about the same as  which is the slit width. 

Now, the amplitude of this light as it passes through this slit would be like this  

which is shown here which is why it is called the slit function; at this slit diffraction 

takes place. What I would like to know is the following: what is the intensity at some 

point  which is some distance away from this screen which has the slit ? 

So, if I choose  to be some distance away from the midpoint the phase difference would 

be a formula like this . To find the intensity at certain point  like this I need to 

simply add the contributions of light coming from every point along this slit and each 

point acquires a slightly different phase from the previous one. 

If you count  from the midpoint onwards as a function of  it tells you what is the phase. 

So, phase changes linearly with the  that is what is expressed by this formula provided 

of course,  is the angle of diffraction. Let us say at the midpoint my function is  a 

little bit away from the midpoint my function will be  multiplied to . I need to 

integrate over these phase differences which means I need to integrate over  itself. 
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So, I can write the intensity in Fourier space you will realize that the result of this whole 

process is that finally, it gives you a function  which looks like what we have 
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calculated for the slit function. So, in other words the intensity at the central point will be 

maximum and it is going to decrease on either side. So, that is going to be this 

succession of dark and bright bands.  
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Another example that I would like to give you is that of a Gaussian function. So, I 

written the Gaussian function here let me just plot it for you  as a function of  look 

something like this and this is . So, this value is  and at half that value this width 

would be . So, it is a function of , there is a parameter which specifies the width and 

another one which specifies the height; height is given by ,  is the width. I need to find 

the Fourier transform of this function. 
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As usual our function is defined of course, in the domain between  and + . So,  can 

go from  to . So,  the Fourier transform of  would be. So, the way that 

one handles these kind of integrals is by a process called completing the square. What I 

have done is to multiply and divide by , three terms in the exponent becomes this 

quantity here. 
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Now, we can use the standard result that  when integrated between  to  

gives you . So, if I use this result  can be written as this is the final expression 

for the Fourier transform of a Gaussian function.  which is a function of frequency 

is also another Gaussian function. So, what is the difference? If the width of your 

original function is large the width of the Fourier transform function even though it is 

still a Gaussian, it is going to be much smaller. Let us see that visually by plotting it. 
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Here I have plotted both the functions. The original function  is there on the right 

hand side. So, you notice that height of the function is  and width of the function is 

given by . On the other hand, on the left hand side I have plotted the Fourier transform 

function we just obtained this result for the Fourier transform of a Gaussian function and 

it turns out that Fourier transform of a Gaussian is another Gaussian. 

In terms of their shapes they are nearly the same, they look alike. They are not 

quantitatively equal. The width of  is  for the Fourier transform function the width is 

 times some constant. If the original height is  and if you assume that  is much larger 

than 1 it is going to be  times . So, what you are going to really get is a function that is 

narrow in width, but very sharply peaked. 

e−αx2d x −∞ +∞
π
α F(ν)

F(ν)

f (t)

h

σ

f (t) σ
1
σ h σ

h σ



(Refer Slide Time: 23:32) 

 

Let me conclude this section with the last example which is the Dirac delta function it is 

equal to 0 if  and is equal to infinity at . To think about it you can imagine 

that you have Gaussian like function and the width is getting narrower and narrower. As 

we just saw as the width gets narrower and narrower the height increases. So, you are 

going to see something like this. So, you can think of your Dirac delta function as a 

limiting case of this process of making the width smaller and the height getting larger 

and larger. 

(Refer Slide Time: 24:17) 

 

x ≠ 0 x = 0



It is defined by the property that  integrated over  is equal to 1 over all space. If I 

take the Fourier transform of this function which is really very very narrow, I should get 

a function which is highly extended very broad in its width. So, this is what I am 

expecting. 
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So,  is generalization of this  such that at  the function is infinite and 

everywhere else it is 0. The integral of this would be equal to . Earlier we were 

working with time domain function. So, it made sense to work with , but here our 

function is defined in some sense the position space. So, I am going to work with . 

So, there is no  here ok. But, nevertheless this is still Fourier transform and now, if I use 

this property which is given here the result of this is . 
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So, my  is a delta function sharply peaked at . Now, the Fourier transformed 

domain if I plot mod square of the mod square of  it will be a constant because  

is  and  will be  and that is going to be a star of  is  into 

. So, it would cancel and give you 1.  

Now, you look at what we have got. In position space it was a sharply peaked function 

and we took the Fourier transform and look at the same function in the  space it extends 

all the way from  to . So, it is extreme example of what we have been seeing, 

something that is sharply peaked in one space is extended over the entire space in the 

Fourier domain. 
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