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Welcome to the 3rd lecture this week, since the beginning of this week we were looking 

at the Fourier series. I have written down this formula standard Fourier series formula, 

here this first term  tells you the average of your function  and the rest of the 

infinite terms tell you the oscillations about that level and later on we extended it to cases 

where the function is not necessarily periodic.  

But you can still use this machinery and say that over a small region it can be 

approximated by a function which is periodic. Now, we shall use all this machinery in 

this lecture to write down an explicit formula for energy of a vibrating string. So, this is a 

standard problem we had looked at a few weeks back, the question of a string that is tied 

between let us say two rigid walls and you wanted to find out what are the various 

possible frequencies that can be excited on this system. 
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So, here I have the solution for this specific problem with boundary conditions taken into 

account. The boundary condition says that  which is displacement should be 0 at  

clearly this solution satisfies that. And, if you also substitute for  which is the normal 

mode frequency of the th mode into this equation you will also see that when  

again the displacement is 0 and it is so far all the normal modes. So, what we have is the 

displacement as a function of position along the axis along 0 to  and it is also a function 

of time.  

Now, the question was to calculate the energy of such a vibrating string, this small part 

which is marked in red, all this small infinitesimal region does is to oscillate up and 

down. So, it is just executing simple harmonic oscillations and we know the formula for 

energy of a simple harmonic oscillator. So, you can write down the kinetic energy of this 

small segment and also the potential energy of this small segment. So, you do that and 

integrate over the entire length of the string, add all the contributions from every part of 

the string and then we would have got an expression for energy of the string. 
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So, let me write that expression now. Now you will notice that this quantity it depends on 

this  and . So, these need to come from the initial conditions the information about 

what kind of oscillation that is going to result will only come from the initial condition. 

So, I am going to pull the string right at the center of this string and pull it by an amount 

 and leave it thats going to excite the string and it will start oscillating,  is an index of 

which normal mode we are working with. So, when I excite this thing which is the 

normal mode did I excite. 

In this case what happens is that when you arbitrarily excite strings like this, you are not 

exciting a single normal mode you are most probably exciting a collection of normal 

modes. Meaning that it is a combination of displacements of several modes, so what I am 

going to see as vibrating string subsequently will be well approximated by several 

different normal modes. So, in principle you could say that it is going to get 

contributions from pretty much all the normal modes. Given that this is my formula for 

energy, I want to find out what is the  and  subject to the initial excitation being this 

triangular form that I have given here.  

And, then once I find the energy of the th normal mode I will add over I will add the 

energy contributions coming from different normal modes and that is going to give me 

the final answer. Any arbitrary displacement of a string like this can always be written as 

a summation over the displacements of all the normal modes. So, my net displacement 
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which will be a function of position and time which I will call as  without any subscript, 

that will be a summation over this  summation, summation over all the normal modes. 

So, this  which is a function of  and  tells me the displacement as a function of 

position and as a function of time for some arbitrary displacement that I have done. Now 

I want to specialize to the case when . So, I want to know what is the initial 

displacement. 
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So, all we have done is to simply substitute  in this the last equation in this slide. 

Next is I want to also get the particle velocity at , the displacement at initial time 

depends on this quantity  and the velocity at initial time depends on this quantity . For 

a moment imagine that  is some arbitrary function of , then what you have on 

right hand side is an infinite series in terms of ; . 

So, that should remind you of Fourier series and similarly if you look at this  as a 

function of , again just for a moment if you imagine that this is some arbitrary 

function this entire expression looks like a Fourier series. We know how to extract this 

coefficient  and  because, in that case  and  will precisely turn out to be the 

Fourier coefficients. 
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Here I have collected the result that we have till now obtained. So, using the Fourier 

series that we had learnt now I have these expressions for  and of course, you can 

write only for  because, your coefficient here is actually the product of  and . So, I 

have an expression for . 

So, if we are going to start our string from rest in that case this velocity is going to start 

from 0. So, velocity at all the positions along the string is going to going to be 0 and if 

that were the case that the initial velocity is 0 this implies that . 
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So, in that case our problem simplifies even further because, we can set all these  to 

be 0, in which case the energy is simply . So, next let us now find  then 

substitute it back in this formula and to find  I need to do this integral here. To do this 

integral I have to specify this initial displacement and as you can see my initial 

displacement is that I am actually pulling the string at the midpoint of that string at 

 by a distance . In other words the initial profile of displacement is what is given 

by this figure that you are seeing right now. 

I have written down the initial displacement in analytical form as you can see  is the 

height by which I am pulling it initially and you will also notice that if  the 

displacement is 0 and also that if  which is the other end of the string again the 

displacement is 0. To be able to do this integral we needed this  now we have this, 

so we can go ahead and perform the integral and obtain . And as you can see the 

integral needs to be split into two between 0 to  and  to  because the functional form 

of  in these two regions is different. 
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Now, I have written the integral explicitly by substituting for  in the correct 

regions so, one between 0 to  and other between  to . You will notice that this 

integral alone will split into two integrals which could be written as. So, I urge you to do 

this integral, it is fairly straightforward and simple integral when you complete the 

exercise. 

So, this is the expression for  and you should keep in mind that in obtaining this we 

should substitute for  as . Where,  is of course the speed of the wave, if  is even 

 has to be 0 because in that case the  will be 0. 
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Hence in the expression for energy I can remove this sin square term and say that n has 

to be only odd numbers, we are nearly in the last step. So, the total energy would simply 

be sum over all the  and remember that  has to be odd numbers, let me put that in 

here in the summation.  

I have also substituted for . So now, after cancelling everything I am going to be left 

with the following expression. So, here I have my final expression for energy which is in 
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terms of summation over odd integers. And, if you remember in the last module, we in 

fact worked out precisely this summation, let me just quote the result for you. 
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Now, we can substitute this in our expression for energy that we have just obtained and if 

we do that I get my final expression. The tension in the string is equal to  and rho 

is the linear density which is . So, this gives me the final expression for the energy. 

So, you will notice that this relation that we have got depends only on the top level 

parameters of the problem, one is it depends on the uniform tension in the string.  

It depends on the total length of the string between the two walls and it depends on how 

much or by how much I pull the string away from the equilibrium position. So, if you go 

back to this figure here, I pulled it by an amount  and it turns out that the energy of the 

oscillating string is proportional to . Clearly, it makes sense because the energy of 

vibration being the kinetic energy should be equal to the potential energy that was given 

to it initially; this is precisely because we have not allowed for any dissipation. 

In fact, you could see that total  that I have obtained is independent of time and what 

we have obtained is the energy of the oscillating system for a specific choice of initial 

condition. And, here the choice has been such that we were able to use whatever we 

learnt, suppose for instance I say that I have my string here and this is my arbitrary 

ρ × c2

m
L

c2

d

d2

E



choice of initial condition. There is no guarantee that a problem like this can be doable 

analytically, in most of such cases you will have to do the problem numerically.


