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Welcome and as we start week 9 it is a good time to look back at what we had done. So, 

we started with very simple oscillations of a single object, then we analyzed oscillations 

of coupled objects. Many beads for example, coupled together and we were interested in 

the coupled mode of oscillation in other words what is the pattern of oscillation of all the 

particles together and then we went beyond it brought all the particles close together to 

form a continuum and it gave us a wave equation. 

And, from the wave equation we looked at transverse oscillations described by wave 

equation, we also looked at the longitudinal waves which are also described by the wave 

equation. Prominent example of longitudinal waves are the sound waves. So, we derived 

the formula for speed of sound, we also looked at how the formula would change if we 

were describing sound propagating in a solid and also what happens when waves in 

general and in particular sound moves from one media to another media. 
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Now, what we will try to do is to address a reverse problem for instance we had done this 

very simple problem where we added two say sin waves with slightly different 

frequencies. So, let us say that this has a frequency ;  and this has a frequency  and 

the difference between them is really small.  you can assume is really small, think 

of it as some . This when we add them together gave us something like a pattern of 

beats. 

Now, the question is if I were given let us say this object the combined waveform can I 

get these individual components. So, that is what we are going to do today and this kind 

of analysis requires this tool which is called Fourier series. 
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I would say that some function is periodic if let us say  is equal to  very 

simple examples of periodic functions are of course,   for example, I can 

construct a periodic function that looks like this. This is also a periodic function. Again, 

the question is the same; now, can I analyze and find out what components of sins and 

cosines have gone into making this periodic function? 

ν ν1 ν2

ν2 − ν1

δν

f (x) f (x + α)

sin x cos x
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The central idea here is that if I have any periodic function  it can be represented in 

what is called the bases of sins and cosines functions. So, I can write it as where  can be 

a extremely large number in principle it can even go off to infinity. So, you will notice 

that the right hand side which is this summation represents a summation over large 

number of smoothly varying functions so, which means that we require the left hand side 

which is the  also be a smoothly varying well behaved function. 

(Refer Slide Time: 04:15) 

 

f (x)

n

f (x)
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We can still have discontinuities which are finite in nature; for instance, if I had a 

function of this type. So, let us say that at , I have this finite discontinuity in the 

function . This itself is not a problem can be taken care of by this Fourier series. 
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Let me write the Fourier series in a compact notation.  is  by 2 plus I have an 

infinite summation  going from 0 to . So, I have written down the expression or the 

Fourier series in a compact notation involving the summation notation. So, the unknowns 

are actually the ’s and ’s. So, those are the quantities which we need to determine if 

we have to make use of this Fourier series. 

So, in general if your function  is sufficiently smooth in the sense that it has only 

finite number of finite discontinuities in all such cases the summation in the right hand 

side is known to converge. So, I am going to state this without actually showing you the 

proof it is written in such a way that we can identify the discrete frequencies involved in 

making of this function . So, this is another representation of the Fourier series and it 

does not take much effort to figure out that  and also that  and 

one another possible representation of the Fourier series is in terms of . 

x = x0

f (x)

f (x) a0

n ∞

an bn

f (x)

f (x)

c2
n = a2

n + b2
n tan θn =

bn

an

einx
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So, I have three different ways of representing the Fourier series depending on the 

problem at hand sometimes one of these is more easier to handle than the other. In either 

case whichever one that you choose to work with you cannot escape from determining 

the unknowns. 
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So, let us first determine  and to do that all I need to do is simply integrate the function 

over the range of periodicity. So, here I will assume that my function  has periodicity 

  and the  integral. 

a0

f (x)

2π cos n x sin n x
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Both will be 0 because for example  for any value of integer is 0 as well. So, this 

integral is 0. So, clearly the  integrated over  is 0. So, that would go away for all 

values of  and you can do the same exercise for . So, integrate  between 0 

and  for any integer value  that would also be 0. So, I am going to have the following 

result. So, now, I have determined the value of  in terms of the function .  

To make this result a little more instructive it is more convenient to divide it by 2 here 

and divided by 2 here and you will notice that the first term which is  is very different 

from all other terms in the series; all other terms involve some cos or sin function 

oscillatory functions whereas, this one is really a constant. So, this is often called the dc 

level or it is a constant that tells you where you are and these oscillatory functions 

oscillate about this the left hand side here is simply the average of the function . 

Now, let us find out the other two unknowns which is ’s and ’s. 

sin 2nπ

cos n x 2π

n sin n x sin n x

2π n

a0 f (x)

a0

2

f (x)

an bn
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So, what I have done is to simply multiply by  throughout the equation and 

integrate over 0 to . So,  by 2 can be taken outside which is this term can be taken 

outside the integral and integral of  will give you 0, this is something that 

we just saw. Hence this term will go to 0. 
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cos n x

2π a0
2π

∫
0

cos n xd x
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 and  are integers we should keep that in mind. So, let us see what happens if  is 

equal to . So, in that case this whole function would simply become  

evaluated between 0 and  and this integral is very easy to do. So, we are left with only 

 as the answer. So, let me write the answer here. So, the answer is  if . 
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So, if  you can use the  formula; so, the result will be in terms of 

 and . So, this integral when  and  are not equal now you can 

integrate this function very easily it is simply a cos function. So, the result will be a sin 

function. This entire function irrespective of the value of  and  until they are integers 

is going to give you 0 if . So, this will be 0 this will also be 0. So, now, I can again 

write the result of this integral as being equal to 0 if . 

And, similarly I urge you to work out what happens if you integrate between 0 to  the 

 integral and this is equal to  as well if  and it is also equal to 0 if 

. Let us say  integrated over  between 0 and . So, in such a 

case irrespective of what  and  are until they are integers the result is always 0. 

The integral here for example, will survive only if  and  are equal and this one is a 

combination of sin and cos integral will not survive for any value of  and  any integer 

n m n

m cos2 n xd x

2π

π π m = n

m ≠ n cos a cos b

cos(a + b) cos(a − b) m n

n m

n ≠ m

m ≠ n

2π

sin n x sin m x π m = n

m ≠ n cos n x sin m x d x 2π

m n

m n

n m
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values of  and . So, this will always be equal to 0 whereas, this one will survive if 

 in which case we will have. 
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I need to do a very similar exercise to find out ’s. So, all I need to do is to go back to 

this the first relation that we wrote down for Fourier series, multiply throughout by 

 and integrate over 0 to . 
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m n

m = n

bn

sin m x 2π
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I have collected all the relations here. So, with this in terms of integral over  we 

know all the coefficients which are ’s, ’s and . So, as I said  or  by 2 gives 

you the average of the function and these other coefficients tell you tells you which 

frequencies are involved in the construction of the given function. 
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Just to give you a pictorial example for instance I have this function here which I just 

plotted out and you can see from the looks of the function clearly if I take this to be the 

origin this point here if that is the origin, then clearly the function is oscillating about  

equal to about  equal to 0. So, which means that the average of the function is 0 and the 

oscillatory component if it is a pure sine curve our analysis will tell us that only one term 

of this ’s would survive and everything else will be 0 and none of the cosine integral 

will survive. So, all the ’s will be 0 for all values of  and  all of them will be 0 

except one and . 

So, it is a simple exercise it is very intuitive you can try and do it in other words to do it 

more formally you should assume that your  is . The result of this would be that 

all ’s will be 0 for all values of ;  will be 1, but all other values of  other than 1 

will be equal to 0 and  of course, will be equal to 0 as well. So,  is related to the 

level the average of the function and just by looking at it you can very easily say that the 

average of the function is 0. 

f (x)

am bm a0 a0 a0

x

y

bm

am m bm

a0 = 0

f (x) sin x

am m b1 bm

a0 a0
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What we know is that if I have a function  a periodic function  I can write it in 

the following manner. To understand what is happening let us take a simple example this 

function would be called an even function because under the transformation that  goes 

to ,  is equal to . So, you put  the function does not change and in 

fact, you can even plot the function. So, it would look like this. So, it is a quadratic 

function in . 

So, on the left hand side of the equation that I have written down I have  and this will 

be half of  is of course,  for this choice  will be  itself and again half 

 is  minus  is . So, clearly the second term will go to 0 and the first term 

gives you  itself which is identity the point that I am trying to make is that you can 

write any function  in the form that I have written down here. 

So, there is one part the first part which would be which would survive if it is an even 

function and then there is a second part which would survive if it is an odd function. 

f (x) f (x)

x

−x f (x) f (−x) x = − x

x

x2

f (x) x2 + f (−x) x2 x2

f (x) x2 f (−x) x2

x2

f (x)
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So, this is . this is an odd function under the transformation that  goes to  ,

 will go to . The  function is symmetric about this line which is  line 

whereas, this one is sort of anti-symmetric. 

(Refer Slide Time: 16:37) 

 

The sin functions are odd functions;  is odd function about  and similarly cos 

function  is an even function. The  function has expansion in terms of , , 

 and so on whereas, sine function has expansion in terms of , ,  and so on. This 

f (x) = x3 x −x

f (−x) −f (x) x2 x = 0

sin x x = 0

cos x cos x x2 x4

x6 x x3 x5
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general result for  that I have written down it says that any function can be written as 

an even function plus an odd function. 

And, clearly our Fourier series is in that form. So, if my  is an even function then the 

only contributions would come from the cosine basis which means that all  ’s would 

be non-zero and all the ’s would be 0. 
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So, this is the gist of what we just learnt about the symmetries of the function. So, if your 

, the periodic function is a even function then all the contributions will come only 

from the even part of the expansion which is the cosine part hence all the ’s will be 

non-zero and all the ’s will be 0. So, if you know that your function originally is a 

even function you do not even have to calculate the values of  and similarly, if you 

know that your function is odd function then all the ’s are 0 for all values of  and 

you need to only calculate the values of  alone. 

But, in general if your  is does not have any particular symmetry of course, there 

would be contributions from both. 
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With all this understanding now let us do one non-trivial problem. So, the problem is I 

have this periodic function which I have drawn for you here. Analytically it is described 

as follows; clearly the function is periodic as you can see. So, the basic periodicity for 

instance you can take it either from 0 to  or from  to . So, one thing you will 

notice is that the function oscillates about  which means that the average level of 

the function is 0.  

So, without doing any calculation I can say that the DC level or the steady state level is 

0. So, a 0 you should get as 0. That is one thing. Just look at the part of the figure 

between  to . So, you will see that it is odd function. We just now a while back 

argued that if we have an odd function and if we are going to do Fourier analysis of an 

odd function the only surviving terms will be ’s;  for all values of  and all the ’s 

will be zero. In other words, the cosine series should all be zero; it is only the sin series 

that will survive. 

2π −π +π

y = 0

−π +π

bm b m am
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So, let us first calculate a 0, the standard formula which we just derived is already given 

here and now if I do it between 0 and  one complete period I need to split the integral 

into two parts because my function is defined differently between 0 and  and differently 

between  and  ok. You can see that here. So, I can rewrite this as 

. So, this is something we expected based on just looking at 

the function. Now, let us calculate the ’s for values of  other than 0. 

2π

π

π 2π

1
2π

π

∫
0

f (x)d x +
2π

∫
π

f (x)d x

am m
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So, to find  again we do the same technique of splitting the integral between 0 and  it 

is easy to do this integral both the integrals will give you a sin function and the sin 

function is 0 at every limit of this integral at 0 at  and at . So, the answer is going to 

be  multiplied to 0. So, the answer is 0. So, the result is that  is all equal to 0 for any 

value of any integer value of . This is something that we guessed based on the fact that 

this function is a odd function. Now, finally, let us calculate ’s. 
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So, let me quickly do the calculations. So,  and integrating these functions are simple 

because both are cos functions. So, let us quickly do that. 
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So, that is going to be . So, I am going to get  between 0 to  minus 

 between  and . If you put in the limits this is going to give me. So, this 

tells us that  is equal to 0 for even values of   will be equal to  for odd values 

of . 

1
π

h
π

−
cos m x

m
π

−
cos m x

m
π 2π

bm m bm
4h
mπ

m
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So, this was the Fourier series expansion that we initially wrote down, and now we know 

that  is 0. So, this term will not exist and we also know that all ’s are 0 this term also 

will not exist and from what we just did we also know that ’s survived only if  is an 

odd integer. So, the first surviving term will be . So, that will be sin n is 1 so, it is 

. Next term will be , but we have said that even ’s the value of  is 0 so, that 

term would not exist. So, the next surviving term will be  and of course, there will 

be a divided by 3 here because of this  and so on. 

So, this series that we have obtained represents this function that we have drawn here. 

So, you can see what we have achieved. So, we have this function which has finite 

discontinuities at several places at , at 0, and so on. And, now all that is represented in 

terms of an infinite series in terms of sine function. So, that is what you get when you 

Fourier analyze any periodic function.

a0 an

bm m

n = 1

sin x sin 2x n bm

sin 3x

nplus
sin 5x

5

π
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