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Welcome to this second lecture, we will be studying Longitudinal Waves. So, originally 

we were looking at transverse waves for most of the time which means that the direction 

of displacement and the direction of propagation were both perpendicular to one another.
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Then we started looking at the longitudinal waves. So, in this case the direction of 

propagation and the direction of displacement both are parallel to one and another. So, 

we saw one prominent case of longitudinal waves which was that of a sound wave.
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And of course, the basic mechanism of sound waves is simply the propagation of 

pressure differences or pressure disturbances. And you say that in the absence of any 

other external force things and so on this parcel of air is in equilibrium with all the 

surroundings which is rest of the air. You can obtain the phase velocity of such a wave 

and phase velocity is simply the velocity of sum or speed of sound in this case and it is 

given by this expression .


So,  is the ratio of specific heat capacities,  is the pressure and  is the density of gas. 

We should be able to see pretty much all the phenomenon we encountered in the case of 

transverse wave for instant standing waves, we looked at the case of standing wave in 

good detail. So, we should be able to see standing waves for longitudinal waves as well.
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But before we get into looking at the longitudinal standing waves lets once again go a 

step back and consider a simple model. So, I am having a large number of beads like this 

which are connected by springs and I am going to take this length between any two of 

these beads to be  and these springs I will assume that all of them have spring constant 

. And what I would want to do in this case it is not to look at the transverse oscillations 

of this collective system.


So, its again a coupled oscillator kind of problems we made several times earlier on, but 

now I want to look at how the waves are propagated in the case when each of these beads 

that we have oscillate in the horizontal direction. Which means, they are not going to 

oscillate in this direction, but each of these beads that you see here would oscillate about 

the mean position in the horizontal direction like this.


So, towards this end now let me draw one possible configuration oscillating 

configuration of this system. Let me say that this is the th or th bead and this is 

th bead and th bead; so, my displacement with respect to the equilibrium 

configuration. So, the equilibrium configuration is this one which is shown at the top and 

I have indicated by this vertical red line the position of the th bead in the 

equilibrium configuration. And with respect to that the new configuration is has been 

displaced by an amount .
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And similarly I can indicate this displacement of the th bead as  and similarly for the 

case of th bead. So, that is displaced by an amount . So, the equation of motion 

would turn out to be something like this.
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So, I am going to in specific focus on the th bead, write the equation of motion for the 

th bead. In this case I am going to get the following relation together we have our 

equation of motion. So, I will let you do that that this equation of motion indeed gives 

you the correct limiting case when you hold the  are actually the th the bead 

and th bead fixed in position.


So, the only oscillating object is the th bead at the center. So, with all these let me 

rewrite this slightly differently as . And as usual I am 

going to identify  as  in which case this equation can be rewritten in a slightly 

different way. So, this is a sort of standard form for our purposes.
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So, this is to remind you of what we had got for the case of transverse wave few weeks 

back and I would like you to compare this equation with the equation that we have just 

now obtained here which is this equation. Given that the equation of motion is identical 

in both the cases, we just need to use the same solution that we had written down earlier 

on. So, let me write down the solution for the th bead. So,  will be a function of time 

that is a solution that we are looking for.


So, in writing this solution you assume that there are  of these beads when we go to the 

continuum limit it really would not depend on this , but for now we will just keep this 

 and remined ourselves that this  is the number of beads. So, this two set of equation 

that I have written down here; one is  displacement of the th bead in th the normal 

mode. So, that is what this one gives me and  is of course, the frequency or the normal 

mode frequency for the th mode.
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So, we can go to the continuum limit, I can introduce this variable  which is , you can 

multiply and divide by . So, it will be  So, this would simply give me as you 

can see  as . So, it would give me  divided by;  is that yeah,  is the total 

number of beads multiplied by the length between two successive beads will give me the 

total length. So, a  is equal to . 


Now, I can plug this in my equation and before I do that we also do this small change of 

notation  indicates th normal mode, th bead,  is the displacement. So, this we 

shall be designated as th normal mode . So, now I have replaced  by  reflecting 

the fact that we have gone from the discrete set of points to continue. So, now, its 

straightforward for me to write the result. 


So, if you notice the kind of solution that I have written down especially this part here 

, it will tell you immediately what kind of boundary condition has already been 

imposed in the problem. So, at  the displacement is 0 and at  the 

displacement is 0 again, even though we did not put in any boundary condition its 

actually implicit in the solution.
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So, with this understanding of the solution that we have got let us look at the largest 

mode which means that  which indexes the mode I will take it to be . And now if I 

plug in that  is equal to ,  will be equal to  and in the limit 

that  is very large  is approximately 1. So, inside this term it will be  which 

is 1, hence  is approximately equal to .


So, this is the largest frequency that will be supported by the coupled oscillator system 

that we have considering. Again this result is reminiscent of what we had seen for the 

case of transverse waves as well even in that case the largest frequency; the largest 

normal mode frequency was indeed , twice the smallest frequency of the problem. 

So, in this case also the smallest frequency is  and the largest frequencies 2 times that. 

So, this is how the pattern would be for the case of largest frequency.
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So, we will seen this and also worked out the conditions under which this comes. Now, 

what is the equivalent of this in the case of longitudinal waves? So, in the case of 

longitudinal waves what you could expect is that the adjacent springs would be 

alternatively compressed elongated; compressed elongated. So, you could see that 

alternatively we are seeing that they are compressed and elongated; now we are ready to 

write the governing equation.
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So, it is going to look like  and that would be equal to  and here the phase 

velocity will be .
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Now, it is straightforward to extend this to all the cases of longitudinal waves. So, this is 

my wave equation and  is the bulk modulus. In the previous module I was using  as 

the bulk modulus, but since it can clash with  being used as a notation for wave number, 

I have change the notation for bulk modulus to be . And the phase velocity would 

simply be  and in the specific case of sound waves in air bulk modulus can be 

calculated starting from gas laws in which case you could write the phase velocity as 

.
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So, as I said this equation has been written with  as displacement. So,  is a 

displacement and it is a function of position at time, we had a small parcel of air. So, 

there was one end of it which moved by some amount and the second end which moved 

by a slightly different amount and we said that when we meant displacement we actually 

mean the average of these two displacements.


So, that is one way of looking at it and we have written down our equation of motion in 

terms of in some sense think of it as the average displacement of both the ends of the 

parcel of gas. We took  and in the limit where the length of this parcel  is 

sufficiently small enough, we said that  can be written as . So, it becomes .


So, the difference in pressure really is the pressure difference with respect to atmospheric 

pressure in a practical case of sound waves in air. There are two possibilities with this 

wave equation; one is I can write the wave equation in terms of displacement of this 

parcel which is what I have done here. But, now I can also rewrite this same wave 

equation in terms of ;  being the difference in pressure with respect to atmospheric 

pressure,  which is that pressure difference that is ,  is bulk modulus into .
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So, now we are going to start using this equation and together with this that we have will 

combine both to write out a wave equation in terms of , let me start with this equation 

in terms of displacement. Now, what I want to do is to take the derivative with respect to 

 on both sides. So, I will have  is equal to ,  and  are constants, so I will be 

able to write it something like this.
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On the left hand side we will exchange the derivatives. So, I am going to rewrite it as 

 is equal to  and again do a exchange of derivatives, so that. And this kind of 

exchange of derivatives is allowed here mathematically and allowed operation.


So, now let us appeal to the relation that I have here this . So, if I want to 

write my wave equation in terms of , let us multiply both sides here by . So, now, 

you will see that  this  is simply . So, this left hand side would become simply 

 and that is equal to  and here again it is the same thing  is .


P

x
∂
∂x

∂2η
∂t2

B
ρ

B ρ

∂2

∂t2

∂η
∂x

B
ρ

P = − B
∂η
∂x

P −B

−B ×
∂η
∂x

B

∂2P
∂t2

B
ρ

−B
∂η
∂x

P



So, I am going to have  and it is very important to note that this  is related to 

displacement through this equation and this negative sign is very important. Now, we 

will see why this negative sign is very important and what is the implication of this 

relation that  is related to the gradient of displacement.
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So, this is an admissible solution for this wave equation,  would be equal to . So, 

I can calculate  from this equation. So, that is my expression for  in fact, I should 

more correctly write this as  which is a function of position and time. So, in this case I 

would like you to look at both these functions. So, displacement and pressure they will 

maintain a phase difference of  which is why this negative sign is very important. 
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Let us look at what happens when you have longitudinal wave setup in a tube like this. 

So, I would taken a tube with one end closed. So, the first thing that we need to worry 

about is the boundary conditions. So, to help us understand the boundary conditions let 

me denote this open end by . So,  right now corresponds to the open end. The 

question is what is the boundary condition at ?


So, now we have two ways of looking at it either you look at it from the point of view of 

displacement or look at it from the point of view of pressure. Since, it is an open end, at 

that end the air is basically in communication with rest of the environment where 

presumably the pressure is the atmospheric pressure.


So, which means that outside of this tube  and inside of the tube if you do not want 

physically unrealistic things happening pressure is and should be continuous in which 

case at  which in this case implies that at the open end of the tube, the boundary 

condition is . If , it implies that it is a node as far as  is concerned, but 

because there is a phase relationship between  and . This would also imply that if 

 in this case the open end corresponds to a node, it has to correspond to anti node 

as far as displacement is concerned.


x = 0 x = 0

x = 0

P = 0

x = 0

P = 0 P = 0 P

P y

x = 0



So, which means that at ,  should not be equal to 0. So, it will be an anti node. So, 

if it is a node this would be an anti node. So, let us now look at what happens at the 

closed end of the tube ok. What is the boundary condition at the closed end?
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At the closed end of the tube if there is going to be any kind of displacement of the 

particles there either the particles will have to move into the body of the cross section 

that covers this tube or they will have to move away in the other direction. If they move 

away in the other direction of course, they would be creating vacuum there and neither 

can this mass of air enter the inside the material there at the closed end at . So, in 

this case it is the closed end  and again since  and  maintain a phase difference. 

So, at closed end .
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Now, we can actually look at some of the patterns of oscillation in tubes of various kinds. 

So, let us see the same thing from the perspective of displacement as well as from the 

perspective of pressure. So, let me show here the perspective of displacement and here 

the behavior as seen for pressure. At an open end the boundary condition is that pressure 

is 0 and at the closed end the boundary condition is displacement is 0. The lowest 

frequency of a standing wave this is how it would look like. So, this respects the 

boundary conditions that we just obtained. So, this is the pattern of oscillation for the 

lowest mode. Now, suppose I had a open tube that it is open on both ends, what would 

happen.


So, in this case as far as the displacement is concerned; the displacement is not 0 at both 

the ends. So, which means that it can support a node at the center, but at any of its ends it 

is going to be like this. Whereas, for the pressure at the open end pressure is 0 which 

means that this is going to generate a node at the open end and it will look like this.


Now let us look at the case when both the ends are closed. So, the lesson is that the 

pressure is 0 at open end, but not 0 at close end which is what you see on the right hand 

side here, and the displacement is 0 at the closed end and is not 0 or anti node at open 

end.
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So, similarly you can see the pattern that is emerging and try and draw for one or two 

more cases to be sure that you understand what is happening here. So, the central idea 

that I want to convey here is that for the general case of longitudinal waves we get a 

wave equation which is similar to the case of transverse waves. And we need to look at 

separately two possible cases; one is displacement and other is the pressure difference. 

And we looked at what kind of boundary conditions would be suitable for both these 

cases for open end and for closed ends.


So, we saw that for the case of open end; at the open end the pressure has to go to 0 and 

for the case of closed end displacement has to go to 0 and pressure will not go to 0. So, it 

will be a node for displacement, but an anti node for pressure. So, with all these 

information assembled, we looked at the lowest mode for three possible cases where you 

have a pipe with one end closed, both ends closed; both ends open.


So, these are the patterns of the lowest frequency modes or the lowest normal modes for 

three different cases. And finally, I took one case of pipe with one end closed and drew 

the first three normal mode patterns. So, we will deal with some more of problems 

related to longitudinal waves in the next lecture.


