
Waves and Oscillations 
Prof. M S Santhanam 
Department of Physics 

Indian Institute of Science Education and Research, Pune 
 

Lecture – 32 
Impedance Matching 

(Refer Slide Time: 00:16) 

 

In this third lecture of seventh week, now we will use all the machinery that we learnt in 

the last two lectures. We will use everything that we know about impedances everything 

that we know about transfer of energy to address an important problem. So, what is that 

problem? Problem of transferring energy from one place to another and waves are 

routinely used in many practical applications to transfer energy and even signals.  

For instance every time you get internet in your home, so somewhere optical fiber cables 

are used. And one of the practical problems is that every now and then such cables might 

get cut and what is normally done is what is called splicing. So, it is like a patchwork, so 

you just put them together by some means and again get the cable up and running. 

In some sense what use to be originally a long cable, now got cut and you have 

introduced a third body in it. What is a guarantee that all the energy that is coming in 

from your wave on one side is going to be properly passed on to the second medium? In 
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fact in general this not going to happen. The wave that is coming in from the left we will 

carry some energy with it and when you have something like a coupler in between these 

two media there is going to be a loss of energy. 

So, the practical problem is the following. So, in all such situations how do we ensure 

that the entire energy that is coming in from the left side of the medium through a 

propagating wave is carried without any loss into the medium that is on the right side? In 

other words we want complete transfer of energy from left to right with nothing being 

reflected. So, that is the practical problem and here in our physics terms this is how we 

sort of envision this problem. Here I have a wave that is incoming in this direction, in 

general you are going to have a reflected wave and then there is going to be a transmitted 

wave. 

Now, I have this coupler in between, what I want to derive is a condition such that the 

entire energy goes from left side to the right side with a with nothing being reflected. So, 

which means that it is going to put in some constraint on some parameters of this 

coupler, that is exactly what I want to derive. 
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Let me say that I have two boundaries like this. So, one at  and other at  and 

this divides this region into three media. So, I am going to have the first one whose 

x = 0 x = L
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impedance is  which is nothing but ,  is the phase velocity of the wave in that 

medium. 

And similarly I am going to have  which is  all the ’s are the linear densities and 

 is . This distance between these two boundaries is length L and let me just 

picturize the wave. So, being something like this. 

So, the incoming wave is  following our usual convention and this one would 

be . So, notice that there is a difference in sign there is  and , 

reflecting the fact that that directions are opposite to one another. And here for the wave 

that got transmitted into region two, I have . And similarly I have a waveform 

that is getting reflected from the boundary at  that would be; and lastly I have a 

transmitted wave. 

And if you think carefully about it you will notice that I will have to write my 

transmitted wave in this form . Clearly this is a wave that originates at  

and that would correspond to like the origin for this wave. So, at  this would 

simply become . 
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Z1 ρ1c1 c1

Z2 ρ2c2 ρ

Z3 ρ3c3

A1ei(ωt−k1x)

B1ei(ωt+k1x) −k1x +k1x

A2ei(ωt−k2x)

x = L

ei(ωt−k3(x−L)) x = L

x = L

A3eiωt
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So, ultimately what I want to do is to get an expression for this quantity, first of the 

boundary conditions is that the displacements across the boundary shall be continuous 

and second is that the transverse force across the boundary should be continuous as well. 

So, we will apply these two sets of boundary conditions that both the boundaries  

and . And before we go ahead I mean you can see that there are several amplitudes 

defined here there is  and . But as you can notice finally what I want is it 

is just a relation between  and  which means that as I proceed I will have to 

eliminate everything else basically  and  we will have to be eliminated. 

So, let me first apply the continuity for the displacement at the boundary . So, if I 

do that I am going to get the following expression. I have written the full expression now 

you put in the condition that this needs to be matched at  and if you put that in then 

you will be left with  term in each of these and all of that would cancel and finally at 

 I am going to get um. So, this should have been  and this should have been , 

so I am going to get . 

So, this is one relation that we have got by requiring that the displacement at be 

continuous. Now if I require that the transverse force at  be continuous I will get 

one more relation. So, all it requires you start from this relation which is given here and 

take the derivative with respect to  and then substitute . So, we did this procedure 

in the earlier modules. So, I will not repeat it in detail. So, I will directly write down the 

result that we will get.  

x = 0

x = L

A1, A2, A3, B1 B2

A3 A1

A2, B2 B1

x = 0

x = 0

eiω

x = 0 A1 B1

A1 + B1 = A2 + B2

x = 0

x = 0

x x = 0
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So, I have the second relation connecting these constants I need to do a similar exercise 

at , you should be able to get the following relations. So, if you put in the condition 

that the displacements should be continuous you will get this relation. So, if you put in 

the condition that the transverse force should be continuous you will get this second 

relation. So, now, I have these four relations all I need to do is to manipulate in such a 

way that I can relate  and  which means that I need to eliminate  and  from 

these four equations that is what we need to do. 

So, to start with you write these two equations eliminate say  and write it in terms of 

 and  and similarly you go to the second set of equations write  in terms of  and 

 and finally we shall of course relate  and . So, if I carry out this procedure this is 

how it would work out. So, for instance eliminating B1 from these two set of equations 

we will give me the following equation. So, I urge you to do it on your own this is 

simple straight forward manipulations no tricks involved ok. So, now I have this 

equation which relates  and  and just a short hand notation is that . 

x = L

A3 A1 B1, B2 A2

B1

A2 B2 A3 A2

B2 A1 A3

A1, A2 B2 r12 =
Z1

Z2
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 As you can see  is eliminated and we get these set of equations. 
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So, this is the expression finally, I get which relates  and  and here  will be 

equal to  and simply substitute the values for  and . You should be able to get this 

as  the quantity that we need is . So, it directly follows from here, so I should 

B1

A1 A3 r12r23

r13 r12 r23

Z1

Z3 ( A3

A1 )
2
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be able to write  and that would be simply equal to . Of course, all this is 

whole square  divided by this quantity within this square bracket here and all that 

whole square. 
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So, now I can go back to what I wanted to obtain from here and that is equal to . 

And now we have this expression for  ok. So, we can substitute for  from 

what we have obtain here, but before we do that I would like to invite your attention to 

what would come here in the denominator here, which would just be this quantity. So, 

you have a cosine term and a sine term there ok. 

Now, if I make the following choices if I take  to be ,  = 0 and  

would be equal to one. In that case what we have is  =  and this needs 

to be equal to one. This is the condition that we have put that the transmitted energy 

should be equal to incident energy and this one reflects that condition and this happens 

when . 

( A3

A1 )
2

2r13

2r13

Z3

Z1

A2
3

A2
1

A2
3 /A2

1 ( A3

A1 )
2

L λ2 /4 cos(k2L) sin k2L

Z3A2
3

Z1A2
1

4r13

(r12 + r23)2

r12 = r23
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So,  equal to  if you go back and see what is  and  is going to tell us that this 

condition needs to be satisfied  should be equal to . Equivalently  or  

should be equal to  along with this the length of the coupling medium should be 

equal to . So, these two conditions together would be call the Impedance matching 

conditions. 

So, it tells me that the impedance of the middle medium or the central medium. So, you 

had three media there is one on the left one on the right and between these two was a 

middle one whose impedance was . So, if you choose  to be and you choose 

the length of that medium to be  in that case you can match the impedance. So, in 

practice this means that all the energy that is coming from the left would be completely 

transmitted without any loss. So, there would not be a reflected component in such a 

case. So, with this I will stop this module and we will continue with some problems in 

the next two modules.

r12 r23 r12 r23

Z1

Z2

Z2

Z3
Z 2

2 = Z1Z3 Z2

Z1Z3

λ2

4

Z2 Z2 Z1Z3

λ2

4
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