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Welcome, this will be the 2nd lecture of 7th week. So, here is a picture that summarizes 

what we did in the last module. So, our standard scenario is that the wave comes from 

the extreme left and hits the boundary at . So, there is change of media a part of the 

wave gets transmitted into the second medium and another part gets reflected back into 

the first medium. So, we can identify an incident wave; for instance as it is shown in this 

schematic diagram. 


x = 0
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So, there is an incident wave, which I call  again is the displacement and this 

displacement of the particles that constitute the wave would be a function of both space 

and time. So,  will be a function of  and . So, there is a transmitted wave which we 

have designated as  and then there is a reflected wave which we have called  and 

importantly these two media one that is  and  they are characterized by 

different values of impedances. 
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So, we can write  as a function of  and  its all written here, we went through this in 

the last module ok. So, I will not repeat everything once again. So, all this constitutes the 

basic setting for the problem. 
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So, the important physics actually comes in what happens at the boundary? So, at the 

boundary, we said that there has to be a matching of the displacements. In other words, 

the displacements to the left side and to the right side of the boundary at should be 

precisely matched. In other words, the displacements must be continuous again you can 

see why it has to be so, simply because purely from very physical considerations you can 

imagine that you cannot have very large displacement on one side and just a little bit on 

the other side you cannot have very small displacement that is untenable such a thing 

cannot happen, purely from physical considerations unless you have some external 

forces acting on it to do such things. 


So, we do not have any such possibilities in this problem. So, the displacements will 

have to be continuous across the boundary. The second condition is that the transverse 

force; the force that acts in the vertical direction, the transverse force has to be 

continuous because if there is a discontinuity in the force, there will be a net force in 

some direction and it will just carry the whole string in that direction. So, again that does 

not happen in practice without any external force being applied and so on.
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 In the previous module, we were able to show that the reflection coefficient and the 

transmission coefficient are simply functions of  and  


(Refer Slide Time: 03:39)





So, pictorially what we have is that there is an incoming wave as you can see which is 

this. It comes and hits the boundary here at  and what I have tried to show here is 

when part of the wave has already been reflected of the boundary. And here I have 

assume that  is infinity which means that second medium offers infinite resistance to 
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the passage of wave. Which means the wave cannot actually penetrate through the 

second medium. So, it will have to be reflected back into the first medium which is what 

sort of happens in this case.


Let us look at reflection and transmission in terms of the energies because these waves 

also carry energy. So, when a wave comes and hits the boundary, its depositing some 

energy at the boundary. So, part of that energy is getting transmitted into the second 

boundary and part of that energy is being reflected back as well. So, today let us go over 

the same sort of phenomena, transmission and reflection of waves at a boundary, but in 

terms of energies. I am going to start by recalling our basic formula for the energy of a 

single simple harmonic oscillator.
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So, here  is mass of the particle,  is the angular frequency  is the amplitude. So, this 

is the formula for energy valid for a single simple harmonic oscillator. Now I am looking 

at the case of a string that is oscillating. So, if I think about this small segment of that 

string, all that this small segment is doing is to simply oscillate up and down. Which 

means, that its essentially just doing the work of a single simple harmonic oscillator. This 

also implies that I can simply use this energy formula of a simple harmonic oscillator 

straight away. Not only that this is oscillating, but the disturbance is actually propagating 

through the string that will be equal to half. 


m ω A



Now,  is has to be replaced by , linear density. So, if I am considering, let say unit a 

small segment of unit length  would simply be the mass. So, I am replacing  by  here 

 into  multiplied by the phase velocity which I will write it as . So, this gives me a 

formula for rate of transfer of energy along the string. So, this is going to be my basic 

formula that I will use to discuss, how much of energy is transferred along the string? So, 

remember that this is for a wave that is propagating along the string. So, the first 

question that I would like to know is how much of energy is let say, coming to the point 

, which is the interface between medium one and medium two.
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To this quantity, the rate at which energy arrives would be equal to  which is the 

phase velocity of the incoming wave in the first medium. Multiplied by  that is the 

amplitude of the incoming wave multiplied by . Now, the energy that is coming to 

 is being split between two parts; one is part of that energy is sent into the 

transmitted wave and part of that energy is put back in the reflected wave. So, this total 

energy has to be now distributed among these two components. So, then I should be able 

to calculate the rate at which energy leaves the boundary and following the formula that 

we would written down earlier that would be  plus of course, this part was 

for the reflected component.
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Now, I will write the energy for the transmitted component. So, that would be 

. The next thing I want to do is to replace this  and  in terms of  and 

we can do that because, we already have this relation that connects  and  and  and 

. So, from here  will be . So, I am going to use these relations.
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Now  and  have been replaced in favor of . So, let us simplify this. This is going 

to give me  that is common which I can take out. And I will be left with 




So, if I take out  again. So, I should have . 

Now if you look at the numerator, this is simply  because this last two 

terms would partially cancel. So, the and that is simply .


So, the numerator and denominator is going to cancel out. So, its going to finally, give 

me just this quantity . So, this is the energy that is expanded in the transmitted 
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and the reflected wave. Now, if you compare this final relation with what we obtain here 

for the rate at which the energy arrives at  at the boundary. We will see that they 

are exactly equal. That should not be surprising because the rate at which the energy is 

arriving at  is the rate at which the energy is being pumped into the transmitter and 

the reflected waves. So, clearly there is energy balance because we have assume that 

there is no dissipation. 
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Now, we are ready to write everything in terms of energies. So, for example, so, the 

reflected energy would be and we already know this quantity  from here. So, clearly 

that is . So, that is the fraction of energy that is reflected back. Now what 

about the transmitted energy? 


So, now let us write a simpler expression for the fraction of transmitted energy. So, 

clearly now, I have these two quantities which are ratios of reflected energy to incident 

energy and transmitted energy to incident energy. So, with this, we can make a few 

simple checks. So, for instance, what happens if . So, in that case, this ratio the 

reflected energy by incident energy would go to zero because you have the term Z

, if both are equal that is going to be zero. And what will happen to transmitted 
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energy, if  and  are equal. So, in that case this term would be 1 because on the 

denominator we will have 2 let say  and that will cancel with  in the numerator.


So, if  is equal to , we will get that fraction of reflected energy would be zero and 

the fraction of transmitted energy would be one. That should not be surprising because 

after all  implies that, both the media the one on the left side and one on the right 

side across the boundary have exactly the same impedance which means that, as far as 

the wave is concerned it does not see a change in media at all, if the impedances are 

exactly equal. Until now, we were calculating the energy of a wave that is propagating. 

So, it is the energy for a propagating wave. Now, what about energy of a standing wave? 

Broadly speaking in such a scenario, the total energy is simply the sum of kinetic and the 

potential energies. 
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So, let say that, I have this string and I am looking at some small segment. Whose length 

is . So, in such a case the kinetic energy would be mass times velocity square. So, that 

is half mass here is the linear density multiplied by  times velocity square, which is 

this the particle velocity. Now, I want to calculate the energy over a larger length in 

which case I could write  to be. So, this is my expression for kinetic energy. 
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So, the potential energy, let us say in some deformed position would be simply equal to 

the amount of work done to deform the string to bring it to that position. So, the work is 

done by the tension in the string. So, if I have uniform tension  in the string and let us 

say that a small segment  gets deformed and length becomes . Now under this 

transformation, how much of energy is stored as potential energy. So, here I have my 

expression for the potential energy which is the uniform tension  multiplied by this 

deformation which is . 
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So, if you remember some modules back may be a week or too earlier we wrote down an 

expression for . So, I even give a short derivation for this segment of length  in 

terms of . So, this is again under the assumption that the its all within the ambit of 

small oscillations. So, now, that we have these expression for , we just need to plug in 

this expression here and if you do that this is what I get  is an integral over  ;

 can be written in terms of  like I have done here. So, everything fits in into this 

equation. 


So, I can simplify this further within again the ambit of small oscillation when I say that 

 is small enough. In which case, the quantity inside this red brackets would become 
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the following. Plus there are higher order terms which we shall ignore because  is a 

small enough. So, if I substitute this within this red brackets this is  and  would 

cancelled. 
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So, my final expression for the potential energy would turn out to be the following. So, 

all I need to do is to simply assume a solution for  and I need to compute  and  

substitute them here do the integral and get the answer. So, let me start by assuming that, 

the th normal mode the displacement which is a function of  and  is given by the 

following expression. So, in these expression  denotes the index for the normal mode 

that we are considering  and  or the amplitudes of the two super post components. 

And  is the normal mode frequency. 


Now to compute the kinetic and potential energy I need  and  ok. So,  would be 

 that would be. So, I have computed . So, similarly I also need an 

expression for  ok.
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So, with these two expressions now rest of the work is simply substitute it in our kinetic 

and potential energy expressions. So, let us first calculate the kinetic energy by 

substituting  in this. So,  is; so, I have this, what looks like a longish expression for 

the kinetic energy. 
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Similarly, I will have another one for potential energy. So, remember that these are all for 

the th normal mode. So, now, we have these two expressions these are simple integrals 

·y Ekin
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to do. So, I urge you to do it plug in the answer you should be able to finally, get this 

expression. So, let me indicate by , the total energy. So, that is the energy in the th 

normal mode. So, that will be the sum of kinetic and potential energies. Of course,  into 

the total length is simply the total mass of the string. So, that will be  

and each of these integral will contribute a value of half. So, here then we have an 

expression for the energy of th normal mode. So, I will close this module with this 

result for the total energy and in the next module, we will look at what is called an 

impedance matching condition. 
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