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As we begin the 7th week we are going to now look at even more advanced dynamics 

that waveforms can show. For example, what we will be doing this entire week would be 

about Reflection and Transmission of Waves. I assume that there is some waveform that 

is propagating let say from the left hand side from the far left hand side and at  as it 

is shown in this figure there is a change of medium. So, when the waveform reaches this 

boundary part of it would be transmitted to the second medium. 

So, when  is positive,  would correspond to second medium and there will be a 

part of it which will be reflected back into the first medium which corresponds to . 

So,  is of course, the position and since we are dealing with one dimensional wave 

forms this alone is sufficient to talk about; to talk about the dynamics of the waveforms. 

So, this is the standard scenario which we are going to work with.  
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So, let us look at some examples before we actually begin our calculations if we think of 

our standard example namely the string, its equivalent to saying that you know at  

suddenly the material of the string has changed. Because in all these problems where a 

wave is launched on a string the medium is the string itself and in the medium of string 

there is some waveform that is travelling at  suddenly the string has changed. So, 

its possible that for example, you could have maybe a thin string for  and a much 

thicker string for .  

So, suddenly the wave finds itself in a different medium when it crosses from  to 

 that is one sort of example you could keep in mind. But there are many examples 

for instance routinely we will have to discuss things like what happens when light travels 

from one medium to another or when sound waves travel from one medium to another. 

So, these are typical examples of when waves do meet the boundary between two 

different media and they do travel from one medium to another medium and there is also 

often when such a thing happens a reflection back into the first medium itself. So, 

anything that I speak in this room a little bit of that is heard in the next room adjacent 

send to me. Simply because the wave is generated the sound waves they go hit the wall 

part of it is transmitted and part of it is of course, reflected back. So, I could say that in 

medium one corresponding to  the impedance of the string is  and in medium 

two corresponding to  impedance is . 

So, when I says wave is going from medium one to medium two its actually going from 

a string which is characterized by impedance is  to another string which is 

characterized by impedance is . We will continue to work with this wave equation and 

the solutions of these wave equations which are simply  as a function of position and 

time. Now, the additional complication is that we are going from one kind of medium to 

another kind of medium. So, let me recap this idea of a impedances.  
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The problem was that I have a string I do not need to worry about what is a boundary 

condition on other end of the string, but at my end I am giving it oscillations and I am 

assuming that there is uniform tension in the string. So, the forcing that I am providing 

here at this point propagates as a wave through the string.  

So, in such a situation we equated the forces at . So, you might recall this figure. 

So, at  we equated the forces. So, the forcing external forcing was  and that 

is equated to the component of tension which is , where  is the angle that this 

string makes with the horizontal. Now, of course, we work with the small angle 

approximation as usual. So,  is approximately  which is  just the gradient of 

the displacement at .  

x = 0

x = 0 F0eiωt

−T sin θ θ

sin θ tan θ
∂y
∂x

x = 0

349



(Refer Slide Time: 05:47) 

 

So, we go through this derivation we compute this  at .  
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And finally, we recognize that there is a quantity impedance that is involved here and 

impedances simply  when we use impedance to characterize a medium what quantities 

are involved, one is the linear density and other is the phase velocity together these two 

quantities characterize the medium. Physically impedances the resistance that medium 

offers to the flow of waves at  I have my boundary.  
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So, this is a boundary where there will be a change of media ok. So, for there is 

one media which is characterized by  and  from the formula that we made just now 

is .  is the linear density in that medium and  is the phase velocity and similarly 

in the region when  the media is characterized by the impedance  which will be 

given by  again  is the linear density in the second medium. 

So, I am going to have a wave that is coming in from far left. So, that would be my 

incident wave and what are the various things that this incident wave can do it comes 

from far left hits the boundary at  there are only two things that can happen one is 

there can be transmission; so there will be a transmitted wave. And another possibilities 

there can be reflection. So, you can have a reflected wave. So, its reflected back in the 

same medium.  

And for each of these waves incident, reflected and transmitted wave each of them are 

solutions of our wave equation. So, we shall start by writing down the solutions for each 

of these components. For a string is the medium through which all this is happening we 

shall assume that there is uniform tension  in this string. 
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So, let me write the incident wave. So, you should remember that this displacement of 

the incident wave as usual will be a function of position and time. So, I should be able to 

write it as . Similarly, I can also write for the reflected wave which is  again 

a function of position and time. So, in the case of reflected wave it goes in the opposite 

direction. So, I need to change the  which is why I have . So, that tells me 

explicitly that its a wave that is going from right to the left and all these are happening in 

medium one corresponding to . So, now, let me also write the solution for the 

transmitted wave which will be as usual function of position and time.  

Now, you will notice that I have used same value of  for the incident for the reflected 

and the transmitted wave, but I have use different values of wave number  and ;  

for the first medium and  for the second medium. So, I should recall this idea that the 

frequency of oscillation is not going to change even across the boundary just going to 

remain the same. So, together as a coupled system  is like your normal mode 

frequency, its not going to change. So, phase velocity for instance which I can indicate 

by  would be .  

So, if you are in medium one both the incident and the reflected wave would have the 

same phase velocity simply because  is same and  is also same for both of them. On 
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the other hand for the reflected wave the phase velocity would be a different value. So, 

that would be  which is . So, let me go back and write these things here in our 

figure. So, this is  and this is  the reflected wave and this is  which is the transmitted 

wave we need to put in some boundary conditions that would connect what happens at 

 to what happens at . So, typically when you see such things happening 

where a wave goes from one media to another media you would not see suddenly the 

displacement changing in value just because it is changed from one medium to another 

medium. 
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One of our first boundary conditions should be that displacement across the boundary 

should be matched, its another way of saying that displacement cannot be discontinuous 

at the boundary. You cannot have a small displacement of the wave that is incoming and 

suddenly that produces a huge displacement on the other side you know that cannot 

happened physically that is not feasible. Second condition is what can be called a 

dynamical condition namely that the transverse force which is given by  into the 

gradient  should be continuous. 
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So, we have the physical system that is setup wave going from one media to another 

media there is part transmission part reflection and we have written down the solutions 

for each of those components you characterize each of the media we have written down 

the solutions. Now, to bring them all together we need some point of commonality in a 

sense and that is provided by these boundary conditions.  

So, both boundary conditions of physically motivated the displacement across the 

boundary should not be discontinuous. So, we put in condition the displacement should 

be continuous and transverse force should not be discontinuous if it does there would be 

net force. So, we avoid that situation and we put in a condition that transverse force 

should be continuous as well ok. Now, we are set up to apply these conditions on our 

equations. So, first of that says that displacement should be matched which implies the 

following. 
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So, I just need to put in  in the in these equations and as you can see it will give me 

 and of course,  can be cancelled that is one way of saying 

that  cannot go to 0. Hence it must be true that  should be equal to zero 

which is equivalent to saying that . 
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So, it connects the amplitudes of the incoming wave, the reflected wave and the 

transmitted wave. So, that is the result of putting in the first boundary condition. So, I 

have put in the first boundary condition. Now, let us use the second boundary condition 

namely that the transverse force should be continuous at the boundary which means at 

.  
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I can express this condition as now again since we already know   and  I just need 

to differentiate all three of them with respect to  I will get the following expression. So, 

I have the complete expression in front of me right now it just requires one 

differentiation with respect to  to be done. Now, we need to just substitute 

throughout. So, this is again second expression that we have which again connects ,  

and  and there is also  and  involved. Now, if you look at what is unknown in this 

there are three quantities ,  and .  

But we seem to have only two equations. So, it appears as though that we will have to 

determine three unknowns from only two equations its true in a sense, but we really do 

not need to know all the three quantities, its enough if we know each of these quantities 

as a ratio with respect to . So, now let me write both these equations in that form. 
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So, I had  this would be, can be written as  which is equal to . 

Second of the equations is that  and that will give me 

 which is equal to  ok. 

So, we will keep these two equation aside for the moment we will come back to this, but 

let me focus for a moment on this second equation. Now, what I want to do is to 

introduce impedances  and . So, you will remember that we said impedance  

characterizes the medium. So, somewhere the impedances will have to enter this 

equation. 

So in fact, we should what we should do is go back and insert the  which was which we 

actually cancelled off from this equation. So, let me rewrite this equation slightly 

differently. So, I am going to multiply it by  throughout which is the uniform tension in 

the string and this  we will substitute by  and  will be substituted by . So,  and 

 are the impedances in the two media.  
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Now, I can cancel  throughout and rewrite it slightly differently I can take  common. 

So, that would be is equal to . So, now, again I divide throughout by  in 

which case this equation would become  into . Now, I have this 

equation and from the other condition I have this equation. From this point onwards I 

just need to solve for  and .  
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One thing to notice with these results is that this ratios  which is a reflection 

coefficient and the transmission coefficient let us  both are independent of  it does 

not matter what your normal frequencies or what your frequencies what if the second 

medium offers a huge resistance which is equivalent to saying that the impedance of the 

second medium is infinity extremely large. 
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So, your intuition should tell you that if its going to offer huge impedance the wave 

should not be able to pass through into the second medium we need to check if that is 

true coming out of the formulas. So, here if I go back to this formula which is  the 

transmission coefficient, if I divide the numerator and denominator by  I will have. So, 

 would be  let me divide throughout by . So, I will have .  

Now, if you take the limit  I am going to get a zero in the numerator and  will 

be zero plus one. So, I am going to get zero by one which is equal to zero. So, that tells 
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me that the transmission coefficient is zero if  is infinity, it very much kind of agrees 

with our intuition that there should not be a transmitted wave if the second medium 

offers infinite impedance. 
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At  going to infinity its a simple exercise simply divide by  in the numerator and 

denominator  will give you let say  and if I divide by  that would be  

and that is going to give me .  

So,  is equal to . So,  is the reflected amplitude and  is the amplitude of the 

incoming wave. So, here nothing is transmitted everything is reflected and when such a 

reflection takes place there is a phase change of . So, that is what we see here in this 

problem, so the entire wave is reflected nothing is transmitted. In the limit when  

 is  and  is 0. 
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Say for example, this is my boundary at  and I have an arbitrary wave packet 

something that looks like this which is going in this direction that is my incident wave. 

And when it hits the boundary if assuming that  is infinity and  is some value of 

impedance what we will see is that. So, part of this wave has already been reflected and 

it comes out with the minus sign and long after it has interacted with the boundary the 

wave would look something like this and it would be travelling in this direction now.  

So, what I have drawn here is what happens when it interacts with the boundary and long 

after all this is happened you will notice that there is only one outgoing wave which is 

exactly like the incoming wave, but sign has sign of amplitude has changed. So, that is 

what happens if  is infinity, if  was not infinity a part of this wave would have gone 

into the second region.  
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In other words the figure should have been drawn something like this; this is my 

incoming wave and maybe when it interacts with boundary there is a part that has 

crossed over with the different amplitude and a part that has gone like this. So, there 

would be a smaller amplitude wave here and another smaller amplitude wave here. So, 

long after it interacts with this boundary here there is one part which will be moving in 

this direction which is the transmitted wave with possibly smaller amplitude and there is 

another one which is reflected which is moving in this direction probably smaller than 

the incident one. 
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