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Welcome to the third module, so let us again as usual begin with the quick recap of what 

we had done in the last two modules. So, we started with our basic ansatz for an oscillating 

system. The oscillating system could be anything, but nevertheless the basic physics is that 

the restoring force is proportional to displacement with a negative sign and this is true in 

the limit of smaller displacements. Now, if you follow this thread of logic finally, you end 

up with an equation of motion, which is given here right in front of you and \omega here 

is the angular frequency. 

So, in the last module we saw that given the displacement being a function of time and we 

were able to obtain the functional form which satisfied this equation. So, for example, we 

could one possible solution that we wrote down was to say that, displacement was some 

𝐴𝑠𝑖 𝑛(𝜔𝑡 + 𝜙),  where ϕ in general is some phase. And if I try to plot these; sketch 

these functions that is how that is what I have here on the right hand side. So, displacement 

as a function of time is a sine curve just as I have written it down here and velocity is 



simply the first derivative of the displacement with respect to time, shown here and 

acceleration is the second derivative of displacement with respect to time. 

So, all that is sketched here and we also saw that we could calculate the total energy of an 

oscillating system. It is made up of kinetic energy and the potential energy. So, the total 

energy is sum of these two energies. So, individually when you calculate the kinetic and 

potential energies, each one of them each of these components is a function of time. So, 

they vary with time, but quite miraculously they vary with time in such a way that the total 

energy is a constant. So, I were to sketch the total energy as a function of time, this is what 

I will get. Basically it is a constant flat line as a function of time and again we rationalized 

it by saying that when we started writing down the equation of motion, we did not allow 

any avenue for the initial energy that is given to the system to be dissipated. 

So, when I start off an oscillation say in a pendulum or in some other oscillating object, I 

give it some energy and the energy does not really dissipate itself. Of course, in real life 

there would always be dissipation and we will deal with dissipation in one of the future 

modules. Today we will look at how we can combine more than one oscillations in the 

same dimensions as well as in perpendicular dimensions. So, this will be the remit of this 

module and the next one. 
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To be able to do that we need to slightly liberate our ideas, in the sense that you can have 

any sort of an oscillating system. So, I have a pendulum here, I have a U tube with some 



liquid in it and if I press the liquid in one of its arms is going to start oscillating up and 

down so, that is an oscillatory system. And I also have; I also have a mass which is hanging 

from a rigid support through a spring so, if I pull it down a little bit here and I can make it 

oscillate up and down so, that is an oscillatory system. And I have a two-body problem 

here, maybe you can think of it as a sun and a planet that is going around the sun for 

instance, this can be thought of as an oscillating system. Will see how rotations can also 

be thought of as oscillations in one of the later modules and I also have an L C circuit. 

So, you can actually construct a whole lot of different systems, where you will see 

oscillating solutions or oscillations do happen physically in such systems. Now when you 

go to the limit of small oscillations in all these cases finally, you will end up with an 

equation of motion which looks exactly like this. So, in all these cases, the governing 

equation of motion is simply a simple harmonic oscillator and since we already know the 

equation of motion and we have already written the solution, which means that every time 

we come across a new oscillating system we do not have to reinvent the wheel in some 

sense. 

So, we could basically straight away write down the solution, just like the way I have 

already written it down here. So, this simply says that it does not matter what the system 

is until this system actually shows oscillatory behavior and in the limit of small 

oscillations, I can always assume that the solution is of this form. So, now, when I am 

going to combine oscillations, two oscillations in the same dimension and so on I will not 

even specify a system. So, this implies that this could have come from any of these systems 

that I have here, a pendulum or a mass that is hanging from a spring and so on.  

It does not matter all this details do not matter until it is an oscillating solution. So, all that 

would matter for is at least for this module and the next one is that we are dealing with a 

oscillator, which is described by an equation of the equation of motion that is shown here 

and its physical origin is more or less immaterial for our purposes.  
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So, with this background, now let us get to the next level of complexity. So, the idea here 

is to super pose two oscillators in 1 dimensions ok. So, it is like having two pendula in the 

same dimension or may be in some way two oscillating systems, but essentially both of 

them are oscillating in 1 dimension and I would like to know what is the net oscillation, if 

I combine two oscillations in the same dimension and the restriction that I place is that I 

have two oscillators and they have same angular frequency. So, which means that I can 

start with the following answer.  

So, I have two oscillators and without going through the grind that we went through in the 

first module and the second module, I will directly write down the solutions. So, that is 

there right in front of you 𝑥1 represents the displacement of the first oscillator and 𝑎1 

represents the amplitude of the first oscillator and ϕ1 is the phase of the first oscillator 

and 𝑥2 is the displacement of the second oscillator and 𝑎2 is the amplitude of the second 

oscillator and ϕ2 is the phase of the second oscillator. 

Now, I want to combine these two oscillations. So, which means that my combined 

solution 𝑥(𝑡) would simply be equal to 𝑥1(𝑡) + 𝑥2(𝑡). And this sort of writing down 

the solution as super position of two solution is possible, simply because the equation of 

motion that we wrote down for the harmonic oscillations is what would be called a linear 

differential equation. So, in a sense all we are doing is to implement a mathematical 



property of linear differential equations, that if I have two different oscillations and their 

solutions a linear combination of those solutions would also be a solution.  

Now, let me complete this. So,  

𝑥(𝑡) = 𝑥1 + 𝑥2 = 𝑎1 𝑐𝑜𝑠(ω𝑡 + ϕ1) + 𝑎2 𝑐𝑜𝑠(ω𝑡 + ϕ2) 

 Now all I need to do is to use the 𝑐𝑜𝑠(𝐴 + 𝐵) formula and write it differently.  

𝑥(𝑡) = 𝑎1 𝑐𝑜𝑠 ω 𝑡 𝑐𝑜𝑠 ϕ1 − 𝑎1 𝑠𝑖𝑛 ω 𝑡 𝑠𝑖𝑛ϕ1 + 

𝑎2 𝑐𝑜𝑠 ω 𝑡 𝑐𝑜𝑠 ϕ2 − 𝑎2 𝑠𝑖𝑛ω 𝑡 𝑠𝑖𝑛 ϕ2 

Now, what I will do is separate out cos ω 𝑡 and 𝑠𝑖𝑛 𝜔𝑡 . So, let me first take cos ω 𝑡 

so, if I take cos ω 𝑡 out I will have 𝑎1 cos 𝜙1 + 𝑎2 cos 𝜙2 and now, I will take sin ω t 

out; in which case I will 𝑎1 sin 𝜙1 + 𝑎2 sin 𝜙2 So, I have done nothing more than 

rewriting the form an expression in a slightly different way. 

Now, the next step is crucial, because even when I combine the two oscillations what I get 

is another oscillation. So, somehow the final result that I get should represent an oscillatory 

solution and that I can do by rewriting this quantity within the brackets as 𝑐𝑜𝑠 θ and this 

quantity here I will write it as 𝑠𝑖𝑛 θ In this case, this is again another expression for 

co s(a + b) So, I could write it as cos(ω t +  θ) So, I know that when I combine two 

oscillations, I need to get another oscillation.  

So, looking for such a solution, let me do the following; it’s cos ω 𝑡 here, but you will 

notice that the quantity is the quantity within the bracket is entirely a constant. 𝑎1 is 

amplitude, 𝑎2 is amplitude, both are constants ϕ1 & ϕ2 are two different phases both 

are constants. So, the entire quantity within the bracket is a constant. So, I could write it 

as some other constant or cos θ minus again sin ω 𝑡 So, the quantity within the bracket 

here is also a constant. So, I will write it as 𝑅 sin θ now what I have is simply another 

cos(𝑎 + 𝑏) formula, this can be written as 𝑅cos(ωt + θ) 
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So, now I have the following result. So, 𝑥1(𝑡) is a combination of two displacements of 

the two oscillators and that is simply equal to 𝑅 𝑐𝑜𝑠(ω𝑡 + θ) So, what we have obtained 

is what we were expecting to obtain namely, that when I combine two oscillations, I will 

get another oscillation. So, the solution that I have got is indeed oscillatory. The phase here 

is theta and the amplitude here is R.  

So clearly, I have now got two different constants R and θ which at this stage I do not 

know what they are. So, they need to be determined from the properties of the original 

oscillation. In other words these two new numbers that I have introduced R and θ should 

somehow be related to a1ϕ1 and a2ϕ2 and it is not very difficult to obtain these relation 

if we simply write down what is R cos θ and R sin θ 

o, let me first write it down for your benefit. So, I have 𝑅 cos 𝜃 and 𝑅 sin 𝜃 written in 

front of me and now from here it is obvious what to do. So, if I want to find R all I need 

to do is to and add both these equations. If I do that, I am going to get the following result. 

If I and add these two equations I will get an expression for R which looks like this and if 

I divide 𝑅 sin θ by𝑅 𝑐𝑜𝑠 θ I will get an expression for tan θ and from this expression 

I can write down an expression for θ as tan inverse of these constants that I have here.  

So, now, I have determined both R which is the new amplitude and the new phase θ, in 

terms of the original amplitudes and the phases. So, the original amplitudes and phases 



were a1ϕ1and a2ϕ2and the new amplitude R and the new amplitude phase is simply a 

function of a1ϕ1and a2ϕ2. So, when I put together two oscillations in the same 

dimension, all I get is another oscillatory solution. The only difference is that the amplitude 

of the new oscillation and the phase of the new oscillation are dependent on the amplitudes 

and phases of the two sets of oscillations which were combined together. And if you notice 

in this expression for 𝑅2, you notice that there is a term ϕ2 − ϕ1, which is simply the 

phase difference between the two oscillators.  

So, the new amplitude is going to depend on the phase difference between these two 

oscillators. Let us say that, I choose ϕ2 − ϕ1 such that the term cos( ϕ2 − ϕ1) = 0 

and this would happen if for instance ϕ2 − ϕ1 = π/2 for example; that is one value of 

phase difference for which cos( ϕ2 − ϕ1)would be 0 in which case 𝑅2 would simply 

be equal to𝑎1
2 + 𝑎2

2.  

On the other hand suppose, let me consider another case for which cos( ϕ2 − ϕ1) = 1. 

So, this for instance would happen if the phases were the exactly the same. So ϕ2 − ϕ1 =

0. In such in that case cos ϕ2 − ϕ1 = 1 and then, 𝑅2 would simply be equal to a1
2 +

a2
2 + 2a1a2 that would be equal to (𝑎1 + 𝑎2)2 
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We can look at another limiting case which is when cos( ϕ2 − ϕ1) = −1 which could 

happen when ϕ2 − ϕ1 is equal to for instance π  and this would give me the following 

relation that 𝑅2is equal to  (𝑎1 − 𝑎2)2 So, clearly the value of the resultant amplitude 

R depends on the phase difference and in fact, if you are combining two oscillations, in 

which 𝑎1 = 𝑎2 and there is a phase difference of π  between the two oscillating systems, 

the resulting oscillation would have an amplitude equal to zero ok. That is something 

spectacular you have two individual oscillators you combine them and they do have a 

phase difference of π in which case interestingly the resulting oscillation has an amplitude 

0.  
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So, now let us go to the next level of sort of complexity. So, earlier we combined two 

oscillations in 1-dimension, which had same frequencies, but different phases. So, now let 

us do a problem where we have two oscillators, but they will have in general different 

frequencies. So, corresponding to this situation I can write down the following solutions, 

𝑥1 is equal to… so, I have directly written down the solution so you should immediately 

imagine that there are two oscillators, for which the solutions have been written down.  

The first oscillator is oscillating with an angle of frequency 𝜔1 and the second oscillator 

is oscillating with an angle of frequency ω2 and these two oscillators are oscillating in the 

same direction or in the same dimension and they have been combined together. Now, 



what is it that we can expect from these two oscillations. The general principle is the same 

if I combine two oscillating systems, I am going to get another oscillating system.  

So, in fact, it is not restricted to just two oscillating systems; this way I could add any 

number of oscillating systems and the solution of the sum of all of them would also be an 

oscillating solution. So, as usual I have written down 𝑥(𝑡) is sum of 𝑥1(𝑡) and 𝑥2(𝑡) 

which in this case would be a 𝑎 sin ω1 t + a sin ω2 t and I will also without loss of 

generality assume that ω2is greater than ω1. It does not matter, but just makes life 

somewhat simpler for us. 

Now, we will use again another trigonometric identity. So, this time we will use sin a +

sin b formula to resolve this. So, if I do that, I could rewrite this expression here 

differently. So, all I have done is to simply use the sin a + sin b formula. So, what you 

see is that, I have again an oscillatory solution, if you like you could think of the solution 

to be some 𝑠𝑖𝑛 ω 𝑡 where the amplitude itself is dependent on time.  

So, to do that let me just rewrite it slightly differently. Now when you look at it in this 

form you could think of this as oscillation, whose frequency would be given by this 

quantity;(ω1 + ω2)/2, that is the frequency being the average of the two frequencies 

and this is this entire term could be thought of as the amplitude and the amplitude now 

depends on time. To understand how this basically plays out let us try and plot out each of 

these terms separately. 
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So, we keep in mind that ω2 > ω1. So, the quantity (ω1 + ω2)/2 is fairly large. So, 

you might actually get something like this and so on. Now let me sketch the cosine term. 

So, if we keep in mind that ω2 > ω1, you would notice that this number ω2 − ω1  is 

smaller than ω1 + ω2. So, clearly this is going to have a much smaller frequency 

oscillation. In other words, as a frequency ω1 + ω2 is larger than ω2 − ω1. So, what 

we are going to have is something that is going to have smaller frequency like this.  

Now our solutions says that these two components needs to be multiplied ,and if I do that 

and sketch it here, what I would defectively see is that the cosine function would decrease 

in amplitude and so on. So, and then what you are left with this an envelope that goes like 

this.  

So, here I have plotted 𝑥(𝑡) as a function of so, there is this envelope which comes from 

the cosine term whose frequency is  (ω2 − ω1)/2 and then there is the fast oscillation, 

which comes from which happens with the frequency (ω1 + ω2)/2. And when we look 

at both of them happening together in the sense that what we are actually experiencing is 

product of these two terms and you get this a waxing and veining of oscillations 

periodically and this happens with the frequency which is equal to ω2 − ω1 
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In the limiting case if I assume that ω2 is approximately equal to ω1, but not exactly 

equal in which case ω1 + ω2 is approximately equal to 2 times ω simply because, ω2 

is approximately equal to ω1 which is approximately ω and ω2 − ω1 this is 

approximately equal to 0. In such case in such a situation the product of our two terms 

basically tell us that the \sin term this is going to do a fast oscillation, because ω1 + ω2 

is large and the cosine term here is going to do a slow oscillation simply because ω2 −

ω1 is very close to 0 very small number.  

In such a situation you end up with a phenomenon of beats and beats have a frequency 

which is equal to ω2 − ω1. So, when you combine two oscillations which have different 

frequencies in such a situation and especially if you go to a limiting case where the two 

frequencies are very close together, in such a case you can experience the phenomena of 

beats.  

You will see that displacement essentially increases goes to 0 and sort of oscillates in this 

fashion that is shown here and typically when you do it do this experiment with, with 

tuning forks what you actually listen or what you hear is simply the intensity of sound, 

which are related to squares of these quantities in which case the beats would have 

frequency equal to ω2 − ω1 



Again to summarize this part of what we have been discussing, we looked at how to 

combine two oscillators in 1 dimension and the two oscillators have different frequencies. 

And when you assume that let us say that there are no phase difference between these two 

oscillators, it is very easy to write down the combined solution as usual. The principle is 

that the net displacement is sum of the two displacements, because they are in the same 

direction or in the same dimension and when you simplify it what you see is that the net 

displacement is a combination of two parts; one which is fast oscillation and the other one 

which displace slow oscillations. 

And when you try to sketch it you see that the fast oscillation is being modulated by the 

slow oscillation, which shows up as the profile in the with the frequency (ω2 − ω1)/2 

here and when you take this to the limiting case where ω1 and ω2 that is the two 

frequencies are nearly the same, but not quite exactly the same; in that case you get what 

are called beats there is strong waxing and veining of oscillations and when you listen to 

two tuning forks which are held close together and led to oscillate, you do get very strong 

sound intensity that is increasing decreasing and so on. So, that is the phenomena of beats. 

To summarize what we have been saying, we started by saying that you could be dealing 

with any kind of oscillator in the limit of small displacement. In all such cases the 

governing equation of motion is the same and the governing solution is in general can be 

written as a combination of \sin and cosine with some face to it. Then we dealt with the 

problem of how to combine two oscillators in one dimension and here the restriction was 

at the two oscillators have the same frequency.  

And the main lesson here is that whenever you combine two oscillators not just two 

oscillators any number of oscillators, the net result is that the net displacement would also 

be another oscillator, as shown here. And all you need to do is to work out the relation 

between the parameters of the original problem and the parameters of the combined 

solution, which is what we did here. The combined solution has an amplitude and phase 

which is related to the amplitude and phases that were originally specified for the 

individual oscillators here.  

And then we looked at the problem of two oscillators, again in 1 dimension, but with 

different frequencies and here in this case then we looked at the problem of again two 

oscillators, but with different frequencies in 1 dimension. So, in this case we showed that 



there would be strong waxing and veining of the displacement curve and the limit when 

the two frequencies are nearly the same, it gives rise to the phenomena of beats. 
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Let us see how beats can be demonstrated with the simple cell phone that both of us have 

here. So, we are using android app which will generate for us pretty much frequencies in 

wide range and he has set his app to 434 Hertz and as you see I have set it to 435 Hertz. 

So, let us begin by just generating 434 Hertz. So, this is just one wave form, whose 

frequency is 434 Hertz.  

Now, I am going to generate 435 Hertz and bring them close together and hopefully will 

see or actually will hear the beats happening. So, I have started mine let me bring it closer, 

you should be able to hear the waxing and veining. So, this is an experiment you can do it 

for yourself and check the phenomena of beats. In the next module we will look at what 

happens when we combine two oscillators in perpendicular directions and that would be 

the subject of the next module.  


