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So, welcome to the 3rd lecture of 6th week. So, till now we say that you could start with 

a coupled system like for instance; a collection of particles which we were tied together 

by strings, and the particles were positioned at equal distances from one another. And by 

taking the limit that these particles come closer and closer or we said that the distance 

between them  tends to zero and in that limit we derive an operational equation which 

is call the wave equation. And we also rederive the same equation by considering a small 

segment of an oscillating string. 


So, there is some string which is oscillating for whatever reason. And you consider a 

small segment of the string, look at the kind of forces acting on that small segment of the 

string. And from that we are able to derive an equation of motion, which is called the 

wave equation. And important input there is that we are still considering small amplitude 

oscillations. So, we will continue to look at small amplitude oscillations. 
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Then, we went ahead and looked at the solutions of these wave equations. So, we saw 

that physically it corresponds to a wave that is travelling in either say positive  direction 

or negative  direction. So, these are the two possible kinds of solutions that wave 

equation would ultimately lead to in one dimension. So, these are called progressive 

waves, because they simply keep propagating in one direction, ok. 


On the other hand, there is another class that you can sort of manufacture by using this 

progressive waves. Suppose, let us see you put in a boundary at the end so that the wave 

that you produced cannot escape off to infinity, but will have to be reflected off from 

some let us say rigid wall. You can easily do this by let us say tying string between two 

walls and create a small disturbance somewhere in between; the disturbance would travel 

let say in one direction or even both the direction it will go and hit the wall.


Clearly, a small disturbance like this cannot penetrate the heavy wall so it would be 

reflected and soon you would see what would typically be called standing waves. They 

are called standing simply because on the phase of it visually when you look at it would 

appear as though the waves are not really moving. So, physically what you need to create 

standing waves or these two foundries at two ends in one dimension, so that the reflected 

component and the incoming component of the wave can together finally lead to 

standing wave pattern.


In today’s lecture we will look at the Standing Wave Pattern or what it means to say that 

a wave is standing.
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So, the solution that I have written actually consist of two parts. There is this part which 

corresponds to a plane wave that is travelling in the positive  direction, let us say in this 

direction positive  direction. And the second part is this, where it is a plane wave again 

but travelling in the negative  direction; in this direction. 


So, you do not know in which direction your wave might be travelling if you make an 

arbitrary disturbance. So, in general you assume that your waveform is something that 

travels in both the directions,  and  are two amplitudes. They would continue to 

remain unspecified. So, this comes out as the solution of your wave equation and view 

superposed two possible solutions. 


Now, the next point is to put in the boundary conditions. We said that to create a standing 

wave you need to have may be two walls between which you might possibly tie your 

string and create a disturbance. In other words, one way of expressing this idea is to say 

that; of course string is your medium in which the wave is going to travel and at this 

point let us call this  axis at  and  there is a change of medium. So what was 

string; is now suddenly becoming a hard wall. So, that is a case at  and . 
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So, which means if you tied your string at these two positions then the usual boundary 

conditions would apply, which would be a statement that at  your  which is the 

displacement would be zero. And similarly at  displacement is zero. 


So, we have a general solution here which is given by this equation, and now we want to 

obtain a solution which respects these two boundary conditions. So if you get that we 

would solve the problem. So, the next step obviously, is to plug-in these boundary 

conditions into the general solution that we have. 
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So, let us start with the first boundary condition which is that; at , . So now, I 

am going to apply this boundary condition. 


So, if I say that at ,  I would get the following. So, zero is equal to 

; which can be written as . And for this to be equal to zero it is 

 which has to go to zero, because  is not identically equal to zero for all 

arbitrary values of  and  which means that this equation implies that  is equal to 

zero which implies that . 


So the two amplitudes, the amplitude of the left going wave and the amplitude of the 

right going wave are equal in magnitude, but opposite in signs. Should not be too 

surprising, because all it tells us is that if you have a wave which is going towards the 

x = 0 y

x = L

x = 0 y = 0

x = 0 y = 0
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A + B eιωt

ω t A + B
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right and there is a hard boundary at the right hand; which means that you have 

something like a wall there and it is going to get reflected there is a phase change of  

upon deflection. So, this essentially is reflection of that fact which means that now we 

can incorporate this condition into our solution. 
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This can be rewritten; of course I should put  here. This can be simplified in the 

following way, . Now the next the step is somewhat obvious you can 

divide it by  and multiply by . And if you do that this quantity can be written as 

. 


So, this is my solution that respects the boundary condition that at , . And 

that clearly comes out here, because if I put  in this equation  is indeed equal to 

zero, because  will be equal to zero in that case, ok. 


Now we had one more boundary condition as well, namely that at ,  as well.
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Now of course, amplitude  is not equal to zero in general and  is not equal to zero in 

general and  is a constant. So, the only way in which this could generate zero is if 

. And if  this is going to give me the following condition, 

because this would imply that  should be equal to . 


And since  now depends on , remember that  is the angular frequency more correctly 

the normal mode frequency for our string. So, it depends on this integer  to indicate 

that, let me say that  is put a subscript  and  would be equal to . And this 

gives me an expression for  which will be . 


So, these are the normal mode frequencies for this problem. So, one thing is very clear 

that arbitrary values of normal mode frequencies are not possible. So, you have some 

basic quantity that is given by  and integer multiples of that are the possible normal 

mode frequency for this standing waves.
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Since I have expression for  which is , where c is the phase velocity of the wave 

I can also write it in terms of the frequency; not the angular frequency just the frequency. 

So, that would be  which is the frequency would be equal  that would be .


And using this I can also write an expression for wavelength, because we know that 

which is frequency multiplied by the wavelength is equal to ; the velocity of the wave 

phase velocity, wavelength we will simply be equal to . So, I can extract that 

parameter here. So,  would be equal to  and that is equal to . So, this quantity is 

again very important and useful for our purpose. 


So, we know the angular frequency, we know the frequency and we also know what the 

wavelength is. It is related to just the length of the total length of the string tied between 

let us say two rigid walls. Let us now visualize the pattern of oscillations given that wave 

assembled all these results together. 
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To do that let me draw for you this picture of two walls, and this is  and this is 

.  is  and . And since  is equal to one I can erase this  here, 

so  is equal to . And  is twice the length of our total string length that we are 

considering. 


So, which means that between zero and  it should correspond to half the wavelength. In 

other words, length  is simply equal to half the wavelength when you are looking at the 

fundamental mode. So, then that is a clue to draw the picture, that would correspond to 

an oscillation of this type. So, this is one possible pattern for the fundamental mode or 

 mode. In principle you could have another possibility which is a mirror image of 

this. 


Now let us go to the next mode: first excited mode or next highest frequency. So, in this 

case I should write it as  maybe I should have written this as , let me do that. This is 

 and this is of course, . Now  will be equal to  and  will be equal to  

itself. So, the entire length of the string that lies between the two walls is equal to one 

wavelength in this mode. So, I should be able to visualize it as let say this is the 

midpoint.
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Similarly I can do for  as well. Here  will be equal to  and  will be equal 

to . So, if  is equal to  its equivalent to saying that the entire length between 

the two walls would be occupied by three by two times the wavelength or one and half 

times the wavelength. So, that gives us the clue as to how to plot this.


So, let us divide into three parts roughly. So, you see that there is no zero crossing in this, 

on the other hand you see that there is one zero crossing here which is this point. And 

here there are two zero crossings in the case of n equal to 3. So, these points where there 

are zero crossings they are call the nodes node or nodes and these points where the 

amplitude is maximum right, this ones this ones. So, these would be call the antinodes 

ok.


So, you can see that there is a progression there is a very clear relationship between n 

and the number of nodes in your in a particular mode. And you will also notice that for 

whatever I have drawn  equal to one, two and three cases in all the cases at  and at 

x = L, y = 0; which is the boundary condition that we demanded and the solutions that 

we are getting precisely respect those boundary conditions.
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n = 3 ω3 3πc /L λ3

2L /3 λ3 2L /3

n x = 0



Now, we can write the final solution. So, I have written down what we had obtained 

earlier that  is equal to . Now let us write this in a more explicit 

form. 


So,. So now, my solution would tell me that I am writing down the solution for the -th 

normal mode; so . So,  here is an integer that would index the normal mood. So, 

in this  is the amplitude which can only be determined from the initial condition,  is 

then normal mode frequency. This provides the complete solution for the standing wave 

problem.


So, if you are careful about it you would notice that the amplitude has a , and seems to 

convey that there is some imaginary part to it, but that can be absorbed as a phase in the 

 term. So, it is not really a problem. So, all these would be settled if you actually look 

a specific case of a standing wave where you would put in some initial conditions. 


And, I would like to leave you with this picture of progression of the patterns that 

standing waves create as you change the mode number.
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