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Welcome to the first lecture of 6th week, we were looking at the problem of particles 

which are coupled together and for us coupling would mean that if I disturbed one of 

them the others would also get disturbed. So, if I oscillate let us say one of the particles 

the other particles would also start oscillating soon enough. We could see a progression 

of Oscillations in the sense that if I oscillate one particular particle its going to convey 

the disturbance to the next and then to the next and so on.  

And when it does so; it does so with some small phase lag and this way the disturbance 

propagates and this propagation of disturbance is what we call a wave. So, every time we 

talk of wave say sound wave its propagation of pressure disturbances. So, similarly every 

wave is in some sense propagation of a certain kind of a disturbance. So, here we are 

talking of disturbance that we created in a string and finally, we decided to bring the 

particles closer and closer such that they would form a continuum. So, in the limit of 



small distance between these particles we derived what are the normal frequencies we 

derived what are the normal modes and so on and so forth. 

So, that is starting from considering single particle, then two particle, then we went to n 

particle and then we took the continuum limit. Now, we will straight away work with 

string and ask for what is the kind of oscillations that it would display or pattern of 

oscillations that it would display. So, the question again is about normal mode 

oscillations of a string. 
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So, the starting point is the consideration of a small portion of a string let us say that let 

me consider a small portion like this ok. So, the entire string is oscillating I am not 

worried about what is happening to rest of the part. So, I am just looking at a small 

segment let me call it a segment that lies between  here and  and this segment at 

 it makes an angle  with the horizontal and at  it makes an angle  with 

the horizontal and we will assume that the string is of course, oscillating and the string 

has mass that is uniformly distributed throughout. 

So, in other words the density of the string is uniform throughout the string and we shall 

denote density are more correctly the linear density of the string by  and we shall also 

assume that there is uniform tension  in the string. Clearly from the physics of the 
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problem we can sort of figure out that there is no net force in the horizontal direction. So, 

the entire string does not move horizontally there are only forces in the vertical direction 

which leads to oscillations. 

So, I am going to denote this length of this segment by . So, let me write an expression 

for . So,  would be. So, clearly  is this horizontal component now this distance 

is  and similarly  is this distance its easy for me to write the following relation for 

, I will let you do it yourself all you need to do is to divide throughout by  then 

you will get the following relation. 

So, this is the relation that I need which gives me the length of the segment of string that 

I am considering. Since there is uniform tension  in the string, so you could imagine 

that there would be horizontal component of tension which would be  and vertical 

component that would be . So, this is this would be the case at this point and 

similarly there would also be another component of tension which would be acting at this 

point as well ok. 

So, in this case the horizontal component would act in this direction and vertical 

component of course, would act downward whereas, here at this point the horizontal 

component would act in this direction and vertical component here. So, clearly we see 

that the horizontal component are acting in opposite directions whereas, the vertical 

component together are acting downwards. 

And we are going to put in an important piece of assumption namely that the amplitude 

of oscillation is small enough which means that  here would be sufficiently small. So, 

if I have to anywhere write  I could make the assumption that  is 

sufficiently small. 
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And in the limit when  is small this is approximately zero. So, the two horizontal 

components balance each other. What about the vertical component of force? So, this 

vertical component of the force or vertical component due to tension is what provides the 

restoring force for the string to oscillate. So, in this case I would get 

  this vertical component could be written as follows. 
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So, that is the expression for the vertical component of tension as you can see I used the 

fact that  is approximately equal to  and evaluated at the right positions. I can 

multiply and divide by  and with this you will notice that the quantity within the 

square brackets can be written in partial differential form. So, this would simply be equal 

to . Now, of course, I will equate this to mass times acceleration. 
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So, mass of the string would be linear density multiplied by the segment of the string that 

is being considered which is  that is the length of the segment that we are considering 

and of course, again in the limit when the amplitude of the oscillations are small we 

assume that  is approximately equal to . So, if you remember we actually wrote an 

expression for  which is the actual length of the segment of the string and now in the 

limit of small oscillation we assume that  is very close to . So, I use the fact that 

 is mass of the string and its multiplied to  and this is equal to . 

So; obviously, now in this expression  and  will cancel out I am left with the 

equation which we have already seen. So, let me for once write the dependence of  on  

and  explicitly. So, that would be . Next let us look at what this term  
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would tell us and to see what it is its more easier to do a quick dimensional analysis. So, 

if you look at the left hand side of this equation this has dimensions of length square by 

time square because its . 

So, its length square by time square and here on the right hand side I have of course,  , 

I will not worry about what it is right now and here I have length square by length square 

because its . So, this dimension of course, will cancel one another which means that 

it tells me that this  corresponds to dimensions of velocity clearly  by  is of course, the 

displacement divided by time and  square by  square is square of velocity. So, this 

quantity  should have dimensions of velocity square. In fact, it turns out that this 

simply represent the velocity of the wave. So, typically its written in the following way. 
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This equation  it depends on tension in the string and the other part is of course, 

the linear density string is the medium in which the wave motion is happening tension 

corresponds to the property of the medium. And of course, the potential energy comes 
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from the fact that you have tension in the string,  which is linear density is responsible 

for basically its a property that is related to kinetic energy. 

So, its a ratio between something that is responsible for potential energy to something 

that is responsible for kinetic energy. So, here again I have the wave equation and to 

again remind you we have not worried about the boundary conditions; boundary 

conditions will be put in when we actually solved for a specific problem. Now, what 

about the solutions? 
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So, when I mean solution I mean the following that I want to know what is  as a 

function of  and . In other words I want to know what is the displacement at a 

particular position on the string at a particular time, if I know this then of course, I can 

claim that I have completely solved the problem. Its easy to see that one possible 

solution could be of the form   ok. So,  of course, is our velocity  is time and  

is of course, the position along the string. So, either one could take some function of 

 or some function of  either of these would work as solutions. 

Now, I just need to plug in these two quantities this and this in this equation. So, its very 

easy to see if I plug in the time derivative then of course, this will go in here and the  

and  will cancel. So, I will just have  equal to and of course, on the right 
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hand side I have  and clearly they are equal to one another. So, we are sort of 

convinced that our ansatz for solution which is some function of  is indeed a 

solution to the wave equation and in a similar way you could also plug in  and 

convince yourself that any function of  would also be a solution of wave equation. 

I would like to now specify some function.  

So, we know that we are dealing with oscillatory system string is oscillating. So, we 

should expect to have sine and cosine functions around. So, if you take any small 

segment of a string that is like maybe one particle and its basically going up and down. 

So, if I focus myself on one infinitesimal segment of a string its doing nothing, but just 

going up and down oscillations for which we know the solution already right from our 

very first week of lectures. So, the solution should be either some sine function or cosine 

function. 
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So, based on this I can say that for a small segment  displacement should be 

. So, that should be a possible solution after all that segment is oscillating. 

So, somehow I want to bring in  in which case to do that I can rewrite it as  

minus this  which is essentially in radians let me write it as  and now to get  

I could replace this  by . Now, you will see that in this I can take  outside. So, I will 
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have . So, clearly what I have obtained is a solution for the wave equation. So,  is 

the displacement which is a function of position and time and as we wanted we will 

written this solution in terms of some function of . 

And in doing this we were motivated by the fact that a small segment of the string does 

nothing, but oscillate about the mean position. And to remind you  of course, is the 

frequency,  is the angular frequency and  is the wavelength and  is of course, the 

phase we can also introduce another quantity called the wave vector which is  which 

will be .  
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So,  is the wave vector and if I plug in the , I can write the solution in terms of  and 

that would become  and this you could easily figure out that this 

corresponds to wave that is traveling in the positive  direction. Similarly, I can write out 

another solution which is  is equal to . So, this would correspond to 

a wave that is traveling in the negative  direction. 

And as usual whenever sine and cosine functions are involved these are not the only 

possible solution that we can think of there are ways of writing it in terms of exponential 
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functions we had already seen that earlier on. Finally, let me also point out that we were 

written  as , but if you multiply it and divide by  you could also write it as .  

The next module we will continue by looking at more properties of these solutions we 

will try and solve some real problems. You will note that in obtaining these solutions 

these are general solutions in the sense that we have not any boundary conditions, but in 

the next few lectures we will put boundary conditions and obtain specific solutions to 

specific problems. 
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