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Welcome to the 3rd module, we will continue our explorations with the Oscillations of 

the Loaded String; a system of connected particles and we also saw that we do not have 

to be specifically worried about boundary conditions until we get the equations of 

motion. But, when we want to solve it for a specific case we need to put in some 

boundary condition to be able to get some suitable results.
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And, here if you look at this equation, this is the equation of motion and we have 

assumed that there is uniform tension  in the string and  tells you which particle you 

are looking at, it is the index for the particle. So, you have  particles and  will go from 

0 to . So, there are  particles ranging from 1 to . The zeroth particle at one 

extreme  and the th particle other extreme  will not oscillate, they are tied to 

the walls, so that in some sense is also are boundary condition. 


And to solve this equation of motion we assume solutions of this form , where is  

is the normal mode frequencies that we wanted to determine the entire system with 

oscillate with one frequency. You cannot have a situation at least in this kind of cases 

where one part of the system are, let us say half particles oscillate with one frequency 

and other half oscillate with another frequency that cannot happen.
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So, here is a picture of a the system that you are looking at. I have two rigid walls and 

zeroth particle, th particle is embedded in the wall and rest of the  particles are 

free to oscillate strictly in the vertical plane,  is the amplitude of the zeroth particle 

 is amplitude of the th particle, and with all these assumptions and 

substituting in this solution we derived the results, the results being one is the normal 

mode frequencies which in general is given by this one for  particle system  normal 

mode frequencies, this  is essentially a index for the normal mode frequencies.
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So,  goes from 1 to  and  would be the first normal mode frequency and so on. 

And  as I said is the index for the position of the particle along your string. So,  would 

tell me what is amplitude of the  th particle. And again the amplitude of the  th particle 

depends on which normal mode you are looking at. So, the amplitude  depends on both 

the induces  and  as you can see here.


And this general expression for the normal mode frequencies  which is here, can be 

simplified, if you if you are looking at only the lower frequencies which means that  is 

much less than the number of particles that you have. In that case we saw that we can 

write that  is equal to  times , where  is this quantity .  is often called the 

linear density or mass per unit length.


With this background we will address few related questions, questions related to this 

problem. So, the first thing we should do is to see if all that we did is right. So, we 

already solved for example, a problem with two beads.
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So, suppose I have this simple system, instead of considering  particles, my  is now 2. 

So this is the zeroth position th position or maybe I should say third position and 

this is 1 and 2.
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We solve this problem already in one of our earlier module, we know the results. Now 

we should check, now that we derive a more general case we should check if we are still 

able to reproduce those known results from these general results. So, if we have this 

problem in this case  is equal to 2 and I am going to have two normal modes. So,  will 

run from 1 to 2, and there are two particles, so  will also run from 1 to 2.


So, let us see if we can first get the known results, let us first get the normal mode 

frequencies. So, I have this expression that we derived earlier. So, I just need to plug in 

all the values, so if I do that. So, let us first get the lowest frequency.
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So, I have this expression,  and if I set  to be equal to 2 which will be the 

second normal mode frequency that would correspond to,
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So, I will live it to you as an exercise to substitute the values for  and  and 

you should be able to recover the known results for  and .


Now, that we have the normal mode frequencies, let us see if we can get the normal 

modes themselves; the pattern of oscillation. To get the normal mode pattern we need to 

work with the expression for the amplitude which is given by this expression.
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So, now we will repeat the same exercise. So, let us set  equal to 1, which means that I 

am going to get the normal mode for the lowest frequency. And in the normal mode I 

want to get the amplitude of the first particle. So, that would mean that  is equal to 1 as 

well. So, now simply plug in all these things, so I will get  is equal to  by of 

course,  is 2, so that is . Now what about ?


So, there are two particles and again we are still looking at the lowest frequency 

corresponding to  equal to 1 and now  equal to 2. So, that would give me ; 

 is equal to ; therefore, we can write   . So, this is our normal mode or 
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if you write it in vector form this will be . So, that is our normal mode. Now, so we 

look at the second normal mode corresponding to the larger of the frequency.
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So, that would correspond to  and again I will work with do it for the first particle 

corresponding to . So, in this case the expression would be, and now I stick to 

; the same normal mode, but for the second particle. So, now, its easy to verify 

again we can put in the values for  and , you will notice that . 

So, that would correspond to saying that my normal mode is  ok.


So, again if you remember what we had done the previous module, this correspond to 

two distinct patterns of oscillations; one in which the two particles just go up and down 

like this together, the so called in phase oscillation and the other one where, when one of 

the particle is above the equilibrium point then second one is below the equilibrium 

point. So, you have this anti-phase osculation when one goes in the other goes down and 

so on, so that is this second mode. So, if I have to quickly sketch that it would 

correspond to something like this whereas the first one would correspond to something 

like this.
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So, in general we kept arguing that if you have  particles you should have  normal 

mode frequencies. Can we say something about what is the largest frequency that is 

possible. So, let us address that question.
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Now, I need to determine what is the maximum normal mode frequency, that is possible. 

It is easily seen from the formula that if this quantity is equal to  that is when  

would be maximum and that would happen if . In other words we are looking at the 

largest mode, so the frequency of the first mode is the lowest; call it the zeroth mode and 

the next one has higher frequency and so on. So, the th mode should have the highest 

frequency. 


So, I am going to set , in which case  will be equal to,


	 	 	 	 .


And of course, if  is sufficiently large enough you could sort of say that in the limit 

when  is much greater than one, , in which case this whole thing simply 

boils down to,


N N

−1 ωj

j = N

N

j = N ωN

2T
ma (1 − cos

Nπ
N + 1 )

N

N
N

N + 1
≈ 1

280



	 	 	 	 ,


and that is simply equal to 2. So, this would just be equal to .
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So, my result says that 


	 	 	 	 


and this can be written as . Hence  or the maximum frequency possible is equal 

to  which is equal to ; so, this quantity . So, if you remember  is the lowest 

frequency possible for your system and the largest frequency possible in your system is 

simply twice the lowest frequency that is possible; . So, this is called the cutoff 

frequency and this is true in general for this class of systems. 


So, when I say this class of systems it means systems which are in one dimensions, like 

the one that we are considering and the particles are periodically arranged. So, if you 

consider this class of systems in one dimension periodically arranged particles, then this 

cutoff frequency  is a common a result for all such cases. So, we have seen what is 
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the largest frequency, that is supported by our system. What about the normal mode 

itself, what is the pattern of oscillation corresponding to this largest frequency?
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 This can be obtained by again going back to the equation for the amplitudes. So, just to 

remind you once again, the equation for amplitude depends on two things; one the 

normal mode that you are looking at and the position of the bead along the string. So, 

just to fix the parameter, so I am going to look at the normal mode corresponding to the 

largest frequency. 


That means, that  and of course,  will go from 1 to .  and  as usual are 

equal to zero. And this quantity  can be rewritten slightly differently. It can 

be written as , where this quantity  is equal to . To get some 

information about the pattern of oscillation I also need what is .
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Let me for compression also write  which will be . Remember that  is 

an integer going from 1 to . So, if  is ,  comes with So, 

in other word if  happens to be a odd number  would be even number, or if  is a 

even number  would be odd number. 


So, under all the circumstances if I take  divided by , the ratio will always be 

negative, simply because one of them is always going to throw up a negative sign for a 

given value of . So, which means that the neighbouring amplitudes are always going to 

be negative of the other; so, there is always going to be a negative sign in this ratio of 

 divided by . So, with all these information now we can roughly plot the pattern of 

oscillation.
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 And we can in general also look at what is the overall profile of these oscillating 

particles. to do that we just need to go back to the formula which is the ratio of the  th 

and th amplitude which is written down here.
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Again in the limit when  is large, so I will take  divided by  to be equal to 1 

approximately. So, I have   . And when  is zero which is this point and  

is this point, so both are points at which the amplitude is zero. So, which means that this 
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should describe for me and ampli overall profile, that is like this. So, this is for the 

alternative sequence of particles which might probably be something like this.


Now, you can do a similar analysis for  and it will tell you that the equivalent profile 

might look something like this and that would correspond to particles here. So, now, you 

can draw the overall picture. So, the alternative particles in this are always out of phase 

by  with respect to each other. The neighbouring once maintain a phase difference of . 

So, this more or less completes the coupled oscillator system. In the next module we will 

look at how we can take the limit when the distance between the particle goes to zero 

and go to the continue limit.
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