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Welcome to the second module of the 5th week. We will started with loaded string. So, 

in this you have a collection of particles which are connected by a string. So, you should 

really imagine it as a collection of coupled oscillators; coupled in this case through a 

string, but it could be coupled by any other means. So, this is a sort of abstract system 

that we are studying to understand what happens when you put together large number of 

particles and couple them. 


So, the central idea is that you have  of these particles capital  number of particles and 

we have not really said anything about what the boundary conditions are, maybe the 

string is tied at the two ends, but that will be left to each problem. So, when we attempt 

the problems, we will specify the boundary conditions and take the solutions as it comes, 

ok. So, right now at this stage we are not specifying what happens to the boundaries of 

this loaded string. 
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So, let us quickly recap what we did with this loaded string.
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So, what I have here is the figure that was shown to you in the last module. So, there are 

these three beads or three particles which are in red in color, and  is the index that 

numbers the particle. So, it goes from 1 to . And what I have is one snapshot of a 

possible oscillation that three of these particles are executing. So, one of them makes an 

angle  with respect to horizontal and the other one makes an angle , and I have an 

equilibrium position, all the oscillations are up and down, above and below this 

equilibrium position.


So, if you do not do anything to this string, it will simply settle at the equilibrium 

position. Once you give it a tap, it will start oscillating about the equilibrium position. In 

particular we are assuming that all the oscillations take place in one vertical plane. So, 

there are no components in perpendicular directions, and we have denoted three possible 

displacements here of the three particles. So, index by  which also incidentally specifies 

the position of the particle in our assembly. 


So,  is the displacement of the  th particle,  is the displacement of the  th 

particle, and  is the displacement of the ( )th particle. And we have assume that 

there is uniform tension  in the string. Without tension of course there is not going to be 
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any oscillations. So, you need tension, it is this tension which provides the restoring 

force for oscillations to take place.


So, what we did is to look at a particular configuration like this, and we realize that in the 

horizontal directions the tension components which are  and  in the limit, 

this is very important. In the limit that  and  are very small, they are equal and 

opposite in direction, and so they cancel out. So, there is no horizontal movement of 

these particles, there is only vertical movement. 


There is a net vertical component which is directed downwards, which is and 

, they add up together. And both  and  can be replaced in terms of  

 and  purely from the trigonometry and geometry of this configuration. 
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So, if you do all that and rearrange the equation, finally you get an equation of motion 

for this coupled system. So, this is something that we derived in the last module. So, we 

will note do that at again. But you will notice that what we have written down is an 

equation for the displacement of the  th particle. So, it says . But you will notice 

that this displacement of the  th particle depends on the displacements of its neighbors, 
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the displacement at  th position and th position, so that is a sign that it is a 

coupled system.


So, what happens at one point or displacement at one point, it is related to the 

displacement at neighbouring points within the approximations that we are considering. 

So, it is indeed a couple system and to solve this we assume that  which is a solution 

that we are looking for a displacement as a function of time for the  th particle or a 

particle at position index by  is given by  multiplied by . So,  is the frequency of 

oscillation. 


So, there are two things to note here in this solution, one is that this  is the amplitude. 

And the amplitude depends on the position of the particle which is why it says ,  is the 

index of the position. So, the amplitude is not constant for all the particles in your 

system, it depends on where the particle is. And then most importantly this . So, 

omega is the frequency of oscillation and the frequency of all the particles is the same. 


So, whenever we look at a collection of particles like this, coupled together, executing 

oscillations, we are interested in what is this normal frequency, what is the frequency 

with which the entire collection oscillates. So, we are not really interested in one 

particular particle what is it doing ok. So, we are interested in this collection. So, our 

solution; the assumed solution is . So, we are going to start from this point 

onwards and obtain general solution for this equation.
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We had obtained this so called fundamental equation. So, it relates the amplitude at  th 

point to the amplitudes at  and  position. For doing this part of the problem, I 

am going to assume that the string is tied at two ends so, it is going to look something 

like this. So, I have a string and so it has these particles which are equally spaced. So, I 

will number it as 1, 2, 3, so that is the index  which takes numbers 1, 2, 3, 4 up to . So, 

if you want you could imagine that there is a particle here and here, but they do not 

oscillate. So, I will call it 0th particle and th particle.


So, if I am going to assume a configuration of this type where the string is tied at both 

ends, I can specify the boundary conditions as  which is the amplitude of the 0th 

particle is equal to amplitude of the th particle, and it is identically equal to 0 

simply because these two particles at the extreme ends do not oscillate, so everything 

else oscillates. So, this is the conditions under which we are going to derive our result.
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In this equation you will recognize that this quantity  is equal to , something that 

we designate as natural frequency to put it that way. So, if I do this, I can rewrite this 

equation differently. So, I am going to keep all the terms involving ; ,  and  

on one side and move everything else to the other side of the equation. So, I am going to 

have something like this. Now, let me change signs overall and I will be able to get the 

following equation.
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So, I am going to assume that this amplitude  amplitude of the  th particle is  which 

is a constant times . If you actually visualize string with beads which are oscillating 

up and down, you would see a pattern maybe something that might look like this. So, the 

successive amplitudes of the particles maintain a small constant phase difference with 

respect to their predecessors. So, if you say look at one particular particle here, and look 

at what is happening to this, they are separated by some they are off by phase so is the 

one which is proceeding it and so on. 


So, what we have captured is essentially this information that at th position the 

amplitude is some constant value, but it is multiplied to something which has a phase to 

it. So, at some certain values of phase, this quantity here could be one in which case it 

has the maximum amplitude something like may be this one here. It has the maximum 

amplitude, but at some other points maybe let us say for instance in this case, the 

amplitude is smaller than any other particles at least these two particles. So, it is a 

reasonable assumption to make. Now, our next step is to simply substitute this assumed 

form for  into this equation that we have.
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When I substitute all that in this part of the equation, it is a simple exercise I argue to do 

it yourself. You should be able to show that, this quantity reduces to . And 

clearly it is in very suggestive form; I can multiply this by 2 and divide by 2 and of 
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course, on the other side, this is equal to . So, the quantity here is . So, 

my final result is; if you notice this quantity  which is  that we introduced  is 

unknown, it is a phase, ok. And we need to determine that phase and we will do that 

using the boundary conditions. And notice that till now we did not make use of the 

boundary condition. So, this is the point when we will use the boundary conditions 

which is that  both are equal to 0. 
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So, if I need , I should have  to be , because if  is 0,  is 0 and it 

will automatically satisfy the boundary condition that  is equal to 0, so that is one 

useful thing that we can get from putting in the boundary condition. And for , I 

could write it as  and that is equal to 0. It is equal to 0, because boundary 

condition dictates that  should be equal to 0. 


Now, under what condition would this be equal to 0; so, this will be equal to 0 provided 

 is equal to some integer times , so that is the condition when this will be equal 

to 0, and of course,  will be equal to and this so on. From this, we can write expression 

for .
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So, now, I will call it  to indicate that there is an integer  involved here, which will 

index the possible values of . So,  is . And in general now it is possible to write 

an expression for . So, now, that I have an expression for the amplitude of the th 

particle. The next step simply is to substitute all that in this equation. So, we know what 

is , we know what is  and , substitute it here and extract  from that, so that 

is the next step.
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To, we know that this is equal to , and we know the value of . So, we have 

everything that we can use here. So, my answer would be  is  from here. 

Now, we simply rearrange this equation to extract the value for . So, let me do that, 

where small  is the mass of each of those beads and  is the distance between any two 

beads in our system. So, this is the required result for . Now, we can do few simple 

manipulations on it and make it a little more elegant, ok.
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So, I have just read it in this expression for  and I have substituted for . So, this is 

the expression the general expression that we need to use and these are the usual normal 

mode frequencies for our problem. And here as you will notice we had  oscillating 

particles in our system, and we have  normal mode frequencies. So,  where  runs 

from 1 to  basically tells you that there are  possible normal mode frequencies.


So, we already saw a bit of this in the simpler version of the problems that we did in the 

previous module. Now, I can make it a little more attractive provided I assume that I 

want to look at small values of  and may be typically  is very large. In that case, this 

quantity here at least  will be small, so I can expand this in a Taylor series. So, all I 

have done is to expand . And since I am assuming that  is small, and  is much 

larger basically we have large number of these particles. So, I am truncating the 

expansion with the first term up to the second term. Of course, here one and one would 

cancel, so I should be getting.
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Now, here let me do small rearrangements. So, I am going to multiply and divide by  in 

the denominator. So, I will divide by  and multiply by . So, that will make it a square. 

So, there will be of course, . Of course, this 2 and 2 will cancel. Let me 

designate this  which is mass divided by length as linear density, let me replace it by .


In that case, I am going to have  divided by  into  divided by. So, I have a square 

 in the denominator, so that is  is simply the total length of the string. It 

is easy to see that  is the distance between any two particles, and you have  of those 

particles. So, there are  gaps. So,  is the total length of the particle which 

means that I am going to have  here in the denominator. So, now everything looks 

nice. So, in the limit when  is small and  is larger  is . 


a

a a

j2π2

2(N + 1)2

m
a

ρ

T ρ j2π2

(N + 1)2 a(N + 1)

a N

N + 1 a(N + 1)

L2

j N ω2
j

j2π2

L2

T
ρ

271



(Refer Slide Time: 20:29)





And this can be rewritten as so now I have written a expression for  th normal mode 

frequency in the limit when  is small compare to . And you could do a little more here. 

So, you could identify this quantity as some  or what is often called the fundamental 

frequency. Therefore,  is equal . So, the successive frequencies are the first 

overtone as it is called is simply 1 multiplied by , second overtone would be 2 

multiplied by  and so on. So, this is a little more elegant, but it is valid in the limit 

when  is much smaller than . 


With this result, I will stop this modules lecture. And we will continue and look at the 

consequences of the all these results in the next module.
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