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Welcome to the 5th week; this is the first module we are going to look at Coupled 

Oscillations of what is called the Loaded Spring; it is also a good point to take stock of 

what we had been doing. 

So, we started by looking at simple oscillations and then in order to get more realistic; 

we added effects due to viscous damping. With oscillations and damping present, we also 

included the effects due to periodic driving and we saw things like resonances happened; 

resonances in displacement in velocity and so on. And then we studied coupled 

oscillations; once you say coupled system you do not worry about what an individual 

element is doing, you can also talk about that, but largely we are interested in what the 

entire system is doing as a whole. 

So, in that context we introduced the idea of normal frequencies and normal modes 

which are basically the patterns of oscillations of coupled system. Now, we want to take 
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that idea further; the idea of coupled oscillations. So, we want to go to a limit where a 

large number of particles are coupled together and in the appropriate limit they would 

may be form a string for example. So, starting point for that would be something like 

what I have drawn here. 

So, you have what are called beads and they are tied let us say through a spring and if 

you really make a; make such a system which is very easy to do. And if you try and 

oscillate one of them or just disturb one of them very soon the one next to it also will get 

disturbed and a little later the one sitting next to that will also get disturbed. 

So, what is happening is the disturbance that you created at let us say at one point here is 

spreading through the string and that is because there is coupling. So, if this is oscillating 

the one next to it also is going to oscillate and so on. So, again we have same kind of 

questions that we had faced in the previous chapter; what are the normal modes. So, we 

can slowly start progressing with 1, 2 and 3, but ultimately we are interested in  

particles or  beads. 
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So, we will begin this by considering a small segment of string and beads. So, what I 

have here in front of me is three beads; which are coupled through a string. Normally, if 

you have such a system of course, you will probably tie it to walls and so on. So, those 
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are what would be called boundary conditions. So, at this stage let us not worry about the 

boundary condition; so we are just focusing on this segment of the string. When you do 

not do anything the string is going to beat out. So, there is some tension  in the string. 

I am going to assume that there is uniform tension T in the string. There is an equilibrium 

position when nothing is disturbed so, that shown here by the lower line. So, when 

nothing is disturbed that is where the system will rest. Now, if I pull one of the beads and 

leave it; it is going to start oscillating. And maybe at some point of time this is the 

configuration of the three beads like the one that I have drawn here. 

So, I am assuming the following things that the beads are equally spaced. So, the spacing 

between the beads is ; the displacement of each bead is denoted by  and there is this 

index ; that you will see here which, which is the index for the number of the bead. So, 

for example, the middle bead which is shown in the figure is th bead and on the left side 

and right side you have  and th bead. 

So, like this you could number your beads going from 1 some large value of , but we 

are focusing on some three of them in between. And in this configuration let me also 

assume that this angle here is . So, we can now resolve this tension into two 

components. You would remember that when we were starting the problem of simple 

harmonic oscillations, we were always looking at the limit of small oscillations ok. 

So, here again we are going to look at the limit of small oscillations which means that t  

and  are really small. So, in the limit of  and  being small; the two horizontal 

components which is  and ; they would be equal and oppositely directed. 

So, there is no net force on the bead in this horizontal direction which means that the 

only possible dynamics for this bead is to go up and down. So, it is in a plane, it goes up 

and down; so that is part of our assumptions. So, the net force downward would be sum 

of these two forces;  and . And here in this case, the tension provides the 

restoring force and what we have written down is  and  is just the 

restoring force. So, with this we can now write down the equation of motion. 
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So, here I have written down the equation of motion for the th bead; I have assumed 

that all the beads have mass ,  of course, is the uniform tension in the string. Now, if 

you go back to the figure that we had seen while back; you will notice that we can obtain 

an expression for  and  in terms of these displacements. 

So, for example, from this figure it is clear that  would be equal to . And in 

the limit of theta being very small  and ; we can assume that the length has not 

changed much; so I will take it as  itself. Similarly, I write an expression for  that 

would be ; divided by . Now, all we need to do is to substitute these two 

expressions back in our equation of motion and remember that this is the equation of 

motion for the th particle. 
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So, now I have my equation of motion and the next part is to actually solve this. We are 

going to adopt the same kind of general technique that we adopted in the last week. I will 

write by assuming that  which is the displacement at the th position is going to; of 

course, be time dependent. 

It will be  which is amplitude  and similarly I can write equation for  and . 

Now, we will substitute these three expressions for the displacement back in our equation 

of motion. If you do that, I will get the following equation it is a simple exercise, so I 

asked you to check that yourself. 
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Ar eiωt yr−1 yr+1
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This equation is often called the fundamental equation and you will see why because 

from this, we could pretty much work out everything that we need. Now, let us a check 

this for the case of a single bead that is the simplest problem one can think of; of course, 

it will be an system without any coupling to anything else, but nevertheless it is a simple 

case to check and I will assume that the distance from these two ends is . 

So, the string is tied to a rigid wall here at this point; there is actually a bead only at 

position one and if I give it a little bit of disturbance; it is going to oscillate up and down. 

So, here the boundary conditions are very clear at; at this point where the string is tied to 

the wall there are no oscillations; it is quite tight there. So,  is the index for position of 

the particle; so, we have only one particle. 

So, we will go from zero to two and there is a particle at position one; zero and two are 

fixed. So, the boundary condition that we have taken is a reflection of this fact; since  

is zero and  is zero; I am left with the following equation. 
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Now, we know that the  is the amplitude of the bead at position 1 and the amplitude in 

general is not equal to zero. So,  is not equal to 0 in general; hence the rest of the 

quantities in the bracket should be equal to 0 that is  is equal to zero and this 

will give me an expression for . So, this will give me .  

So, here I have obtained the normal mode frequency for a single particle; so, it is really 

incorrect to call it normal mode frequency; it is simply the frequency of a one single 

oscillating bead. Now, let us go to the next level of complexity. So, we look at the 

fundamental equation, but again let us write the boundary conditions in this case. 
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Now, let us right specific equations for the other two positions which is a bead at 

position 1 and a bead at position 2. So, let us say  is equal to one; if I set  is equal to 

one and put an  equal to 1 in this equation; I am going to get the following one. 

So, all I have done is to simply substitute the value of  from here in this equation and I 

have got this equation. Now, let us do a similar exercise for  equal to two. So, simply 

put the value of  equal to two in the fundamental equation. Now, if you remember that 

our boundary conditions are  equal to zero and  equal to zero and which case this 

term will go away and this term will go away. 

So, now if you look at the rest of the equations that we have; it is two equations and two 

unknowns the unknowns are  and . So, now we just need to solve for this as usual 

demand that we need nontrivial solutions which means that  and  is not equal to 

zero; if we do that we should be able to get two different values of . 
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So, I have two equations and two unknowns. So, I can substitute for this  from here; if 

I do that I am going to get,  

     

And since  itself is not equal to zero; the quantity here within this square bracket 

would be equal to zero. Now that the quantity inside the bracket is equal zero; so it is of 

the form like . So, I can split it as  and that would give me 

the following equation. 

A1

(2 −
mω2a
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A2

A2 − B2 = 0 (A + B)(A − B)

257



(Refer Slide Time: 13:46) 

 

And in this case each of them would individually be equal to zero; in which case I can 

set each of the term equal to zero and write an expression for . So, if I do that for let 

us say this case; it will give me the following expression for .  

So, let me call it  that would be  and if I set this equal to zero; I am going to get 

the second normal mode frequency which would be  would be equal to . So, now 

in the case of two beads, two oscillating beads and I have two normal mode frequencies. 
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We can also find the normal modes starting from the equations of from the fundamental 

equations, we substituted the boundary conditions. And after putting in the boundary 

condition this is the two sets of equation that I have. And now to get the normal mode for 

each of these cases; I need to substitute for  here. 

So, let us substitute  to be equal to  and remember that we have already said that  

is equal to . So, this is my first normal mode frequency and in this case now if I 

substitute  equal to  in these two equations; you can see what would happen. We 

have only one equation; so it can be easily satisfied if we choose  to be equal to ; so 

that would give me a normal mode to be . 
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And similarly, if I do the same kind of analysis for the second normal mode; I will have 

to substitute  equal to  which is equal to . In this case, I will leave it to you to 

try it out yourself; it is exactly the same way that we did for the first normal mode 

frequency. And if you do it correctly, you should be able to show that  is equal to . 

So, this would correspond to the normal mode that is given by . And now if you 

want to transform this result in physical terms; it is equivalent to saying that the first 

normal mode whose normal mode frequency is given by  will correspond to; both of 

them will go up together, come down together, go up together and so on; so that is their 

pattern of oscillation. 

On the other hand, in the case of second normal mode frequency their pattern of 

oscillation is; if one is up the other one would be down. Now, this is not a viable way of 

solving it if you have a large number of beads. In the next class, we will look at how we 

can obtain a general solution so that we can scale up obtaining the normal mode 

frequencies is a normal modes themselves; even for a general case of  beads which are 

connected by a string.
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