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Coupled Oscillators: 


Problems


Welcome to the last module of this week. So, in the problems that we did earlier we had 

skipped that small portion about finding the normal modes we found the normal 

frequencies. So, in this module we will try and spend some time obtaining the normal 

modes for the coupled oscillations. So, just to make a very brief and quick recap of what 

we had done. So, we started with the coupled system of equation.
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So, it could be for instance something like 2 or 3 oscillators or particles which are 

coupled by a spring. So, I have in front of me one coupled system. So, the way to do it is, 

you write the equations of the motion first and then see if by a simple trick of adding 

subtracting whatever you can uncouple the equations. If you have managed to do that I 

have quite luckily solved the problem if I have not done that, then start by assuming 

solutions which are of the form . 
Aeiωt
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For each of the particles you assume that the displacements are of this form and crucially 

the important point is that, this  that I have here has to be same for all the 3. So, if I set 

it to oscillation all of them together are going to show me one possible frequency of 

oscillation. So, again I stress the different part of couple system cannot in general operate 

under different frequencies at least for the kind of problems we are doing.


So, once we determine these different possible values of angular frequencies. So, we 

solved one part of the problem which is finding normal frequencies or normal mode 

frequencies. One part that is left is to find the normal modes themselves. So, in simple 

terms normal modes are simply the collective pattern of oscillation that are shown by 

your coupled system. So, when we have a coupled system it could be made of two 

particles, 3 particles, a large number may be in general  particles.


So, when you see something like this we are not really worried about what is one particle 

doing out there. So, you are asking question about what is the kind of dynamics that is 

exhibited by all the particles collectively together. So, we are interested in collective 

oscillations ok. So, these normal modes are different possible collective oscillations 

collective dynamics that can be exhibited by a coupled system.
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So, now let us go to the a part about finding the normal modes. So, the first problem that 

we did was this problem of two pendula and their independent pendula, but once you 

coupled them with the spring whose spring constant is , then they become a coupled 

system. So, you assume that a mass of the two bobs are same and it is equal to  and  is 

the length of the string of each pendulum and it is equal for both the pendulum ok. And, 

if you remember so, we wrote down the equations of motion for this system, and then we 

assumed solutions of the following form. So, we said that so, we called one of them as 

the  pendulum with some displacement  and the second one we said is a  pendulum 

we called it  pendulum and it has displacement .


I assumed solutions of the form  is  and  is . So, you substitute this in 

the equations of motion and finally, write everything in terms of coefficients of  and  

and you will end up with this sort of equation that I have here ok. And, we wanted to 

solve for the two unknowns which are there in these equations, the two unknowns are A

 and  and as you can see a very trivial solution for this cases when  is equal to zero 

and  is equal to zero.


But we do not want that trivial solution simply because it would simply mean that there 

is no oscillations because the amplitudes are zero all the time, there is no oscillation we 

do not want such a solution. And this solution will always exist, but we should ignore 

that solution. Other values of  and  which is non-zero for which this two sets of 

equation are satisfied. So, you rewrite this equation here the one that is written here in 

matrix vector form very simple to do that and let us call this matrix  and  as the vector 

for our vector made up of  and .


k

m l

x x y

y y

x (t) Aeiωt y(t) Beiωt

A B

A B A

B

A B

M χ

A B

237



(Refer Slide Time: 06:04)





Then this matrix vector equation can simply be written as 


	 	 	 	 	 


 and for non trivial solutions to exist determinant of  should be zero. we were able to 

obtain the values of normal mode frequencies.
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And, for this problem if you remember clearly we obtained two possible frequencies one 

is  which is equal to  and the second frequency was  which is equal to . 

So, these are the possible normal mode frequency that we had obtained. So, we had 

already solved this part of the problem.


Now, I will find the normal modes themselves and for each of these normal mode 

frequencies there will be a normal mode. So, corresponding to this there will be normal 

mode, let me call it  and corresponding to  there will be a second normal mode let 

me call it .
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So, let us start with  we will substitute this in our matrix vector equation.


ω2
1 ω2

0 ω2
2 ω2

0 + 2ω2
s

χ1 ω2

χ2

ω1
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So, I have just copied the equation that we had before. Now what I need to do is to 

substitute for this value of  by . So, I would get the following matrix vector 

equation now I need to solve this for  and .
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So, if you do that overall change of sign in second equation that is exactly the first 

equation. So, this equation can be rewritten in a easier form  is equal to zero. So, I 

can cancel of  throughout it is  equal to zero and this implies that  is equal to  

ω2 ω2
1

A B

A − B

ω2
s A − B A B
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and since you have freedom to fix one of them I can say that  is equal to 1 in which 

case  will also be equal to 1 and the solution that I get  will be  which will be 

equal to .


So, this is the normal mode corresponding to the frequency, which is equal to . Now, 

similarly I need to go through a similar procedure to find out the second normal mode 

frequency let us do that.
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So, going back to the equation, now for the second normal mode the frequency is  will 

be . Now substitute this value of  in this equation as we did before and if 

you do that and cancel off certain s here is what you will get. So, this is the equation 

that we have and now if you rewrite it as a standard linear equation this would simply be 

 equal to 0.


 And this would imply that  is equal to  as usual this case we have 1 degree of 

freedom. So, if I set  is equal to 1,  would be equal to . So, now, I have my second 

normal mode  which will be . I have now both the normal modes in I can now 

write down the general solution.


B

A χ1 [A
B]

[1
1]

ω2
0

ω2

ω2
0 + 2ω2

s ω2

ω

A + B

A −B

B A −1

χ2 [−1
1 ]

241



(Refer Slide Time: 10:38)





Before we write down the general solution let us look at the physical content of the 

results that we have in the first normal mode is this  and if you remember where it 

came from, it came from the result that  is equal to ,  and  are amplitudes. So, here 

this is telling me that the two amplitudes of the two pendula are exactly equal at all 

times. So, the physical picture is their displacements are exactly like this. They are in 

phase ok.


So, this is one of the possible collective mode of oscillation for this system. So, they go 

together. So, that is this normal mode. On the other hand if you look at the second 

normal mode  corresponding to the value of second frequency , there it tells me that 

 is equal to  or  is equal to  either way it is the same thing.


So, here it tells me that one displacement is negative of the other and equal in magnitude. 

So, it is like this they do this. So, two of those pendula would be oscillating in this mode. 

So, that corresponds to the second modes. So, this entire system of two pendula coupled 

by a spring they have only two normal modes one where they are in phase like this and 

the other one where they are out of phase and like this.


[1
1]

A B A B

χ2 ω2
2

A −B B −A
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Now, in general any possible oscillation of this system can be written as a linear super 

position of these two modes  and . So,  and  are the original coordinate system 

in which we wrote down the equations of motion and we have the solution in precisely 

the same coordinate system. So, this here this whole thing constitutes a general system a 

general solution where the any possible dynamics of this couple system can be written as 

a superposition of these two normal modes, which is what we have done here and in 

particular you could adjust these amplitudes and in general phases as well to obtain a 

particular kind of oscillation, that this system might exhibit.


So, that is the sort of significance of normal modes. Any solution that is exhibited by 

system can always be resolved as linear super position of it is corresponding normal 

modes.
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Let us now go to the second problem that we had done earlier and let us look at the 

solution and obtain the normal modes. If this is the system of 3 blocks coupled by 

springs in this case we have assumed that the two springs have exactly the same spring 

constant. We also assumed that to solve the problem originally we have to write down 

the equations of motion, we assume that these 3 blocks or balls could be called  

blocks and the displacement of each one of them is ,  and  as it as it is shown in 

this figure. 


x (t) y(t) x y

x1, x2, x3

x1 x2 x3
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So, then we went ahead wrote down the equations of motion and as usual our recipe says 

that assumed solutions of the form  may be ,  for ,  and  substitute 

that in the equations of the motion finally, you get this matrix vector equation 
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We put in the condition that determinant of  is equal to zero and that gave us three 

possible normal mode frequencies now the question is find normal modes.
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Aeiωt Beiωt Ceiωt x1 x2 x3

Mχ = 0

M
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So, as usual let us treat the first case when or corresponding to the first case of  which 

is equal to  is  and that is equal to zero that corresponds to this. And, the way we do 

the problem is substitute that value of  here. So, put zero for wherever  occurs in this 

equation in this matrix vector equation and when I write down the resulting equation this 

is what I will get. Now I need to find suitable values of   and  which are non-trivial 

solutions.


Now, if you look at collectively these equations you will see that if I take  and  to be 1 

and also  to be 1 everything would be satisfied. So, let us say that I take  is equal to  

equal to  equal to 1. So, if I do that then the first equation is satisfied which is this 

equation is satisfied and this equation will also be satisfied and this would also be 

satisfied. So, my normal mode is . So, that is for the first case.
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The second case corresponds to the frequency  ok. So, here again the usual way is 

substitute  to be  in this equation that you see here right now this one and you will 

get a simplified matrix vector equation from which you determine   and . 


So, let us do that if I now write the substitute  to be  this is what I will get and once 

again looking at this equation in entirety it is very easy to see that, if I take  to be  and 
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 to be 0 and  to be  these set of equations will be satisfied hence my normal mode 

will be that is  ok.
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And, similarly we can go ahead and determine for the third case which is  is equal to 

 again go through the usual procedure. So, this time I will directly write down what 

you should be getting and again I have 3 unknowns   and  to be determined in a sort 

of consistent way. And, if you look at the equation, if you are more comfortable with it 

write it out in normal equation form and in this case we should be able to get the 

following result, .


So, now I have all the 3 normal modes. So,  is ,  is and  is  and of 

course, we can write the general solution. So, if you think about the physical picture that 

this conveys let us look at the two cases for which the frequencies the normal mode 

frequencies are not 0 say the second case. So, in this case it tells me that the  and  

which are the amplitudes of the first and the third particle they are off by a phase of .
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So, which means that and the middle one is zero. So, the middle one is going to be static 

and the ones which are on the either side of the middle one they would be doing like this 

where as the middle particle is not going to do anything. So, that is one possible 

collective motion of this system and this corresponds to frequency . It is easy to see 

why it should be so, because the middle one is static is like not moving at all you can 

imagine like it is a hard wall and the other two are simply simple harmonic motions 

which depend only on the spring constant of the corresponding springs, which is why the 

frequency is  on the other hand you go to the third case


In this case the frequency is , here it corresponds to saying that the middle one let us 

say that these are the normal equilibrium positions of the 3 cases the middle one would 

be shifted here like this and this would be shifted here and this would be shifted here. So, 

that is going to be the kind of oscillation the amplitudes are going to maintain this ratio 

throughout ok. So, that is the third case and the first case think about it, what is  equal 

to zero basically meaning no frequency. 


So, it is not a periodic motion simply because when would you get angular frequency is 

zero. So, you would get that when time period is infinity it does not quite correspond to 

any kind of oscillatory motion. Now, it is possible to write a general solution as a linear 

superposition of all these 3 cases and it is exactly the way we did for the previous 

problem.


ω2
0

ω2
0

3ω2
0

ω
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So, here I have the general solution in front of me. So, again to reiterate the point that I 

have been saying in general if you have n particles there can be  normal modes. But, in 

general any possible dynamics that is shown by a coupled system can be written as a 

superposition of these normal modes which is why it is easier to think of the system as 

showing these normal canonical modes. From this we can manufacture pretty much any 

other dynamics that the system would show by manipulating the phases and the 

amplitudes. There are more problems of similar type in the assignments I urge you to do 

it. 

n
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