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Welcome to the second module of the first week. So, let us begin with the recap of what 

we did in the first module, we started by motivating ourselves with the physical pendulum 

like the one that I still have here with me. The central piece of physics was that for 

oscillatory behavior and in the limit of small oscillations. It is very important that we need 

to stick to the limit of small oscillations and if you do so, we figured out that restoring 

force is proportional to displacement with the negative sign, again this negative sign is 

very crucial, we need it for oscillatory behavior. 

So, that this statement that is written here is the central piece of physics which will ensure 

that finally, when we get to the solutions, the solutions will display oscillatory behavior. 

Now, starting from this piece of physics we finally, wrote down equation of motion which 

turned out to be a second order differential equation of this type. So, it is 
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𝑑2𝑥

𝑑𝑡2
 + 𝜔2𝑥 = 0 

where this quantity 𝑥 is the displacement. 

So, for instance in the in the case of this physical pendulum that I have here. So, this rest 

position would be our equilibrium position and I make a small displacement away from 

the rest position the distance from the equilibrium position to the new position would be 

my displacement. And this quantity ω we already saw, we already met this quantity and 

this is simply the angular frequency it is 2π divided by the time period 𝑇. 

So, we did not solve this equation in the last module, but we know that solution would 

imply that I should be able to get this quantity displacement x as a function of time. So, 

that is what I would mean by saying that I have solved this problem ok. 
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So, in this module we are going to get the solution for this equation so one could take a 

hard way by actually solving this differential equation, but here in the spirit of what we 

did in the first module, we will try and guess the solution motivated again by the 

phenomena that we see. 

So, if you look at the phenomena that we are trying to describe and for which it appears 

that the equation of motion is what I have written down here, you will notice that this is 
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an oscillatory phenomenon. So, any solution for this oscillatory phenomenon should 

somehow capture these oscillations, in other words the solution mathematically should be 

a function that oscillates as well. 

So, we are looking for functions that would oscillate and they probably could be possible 

solutions for this problem and again the motivation for such an argument is that because 

physically we see that the pendulum is oscillating. Or in general whenever you have 

restoring force that is proportional to displacement with this negative sign, the solutions 

are expected to be oscillatory. So, I am looking for solutions which are oscillatory in nature. 

So, let us begin by guessing some solutions.  

So, one of the simplest possible oscillatory functions that we know are the sins and cosines 

the trigonometric function that we studied in schools. For example, I can make an ansatz, 

I guess of this type that 𝑥(𝑡) is 𝑠𝑖𝑛 𝑡. So, the problem with this guess is that the 

dimensions do not match, on the left hand side the dimension is that of length because 𝑥 

is displacement and it has dimensions of length. But on the right hand side I have 𝑡 which 

is which has dimensions of time and of course, it is embedded inside a more complicated 

function which is sine function. So, clearly there is mismatch of dimension so we need to 

correct it. 

So, one possible way to correct it is to make a small adjustment here. So, let me say that 

my 𝑥(𝑡) is 𝑠𝑖𝑛 ω𝑡 and I know that from what we had seen earlier ω is simply 2π/𝑇 

and this has dimensions of inverse time. So, when I put in ω here the time and inverse 

time they would cancel one another out. 

So, this will essentially be a number and in that case again there is a dimension mismatch 

because on left hand side 𝑥 has dimensions of length, but on right hand side you have 

something that is dimensionless, but that can be easily fixed by adding this 𝐴 here. And 

𝐴, we can guess from what we have written down should have dimensions of length and 

for our purposes that is simply the amplitude; amplitude of the oscillation and left hand 

side of course, you have displacement that is a function of time. 

So, amplitude would be something like this. So, this is the rest position and this could be 

the amplitude the largest displacement that is possible. Now, that we have actually guessed 

a possible solution next, we need to check if this is indeed the solution for this problem. 
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So, let me now assume that I am going to work with this solution, let us say this 𝐴𝑠𝑖𝑛 ω𝑡 

and if it is indeed the correct solution if I plug it back into this equation, it should satisfy 

the equation and it is very easy to do. 

So, 𝑥(𝑡) is 𝐴 𝑠𝑖𝑛 ωt and 𝑑𝑥/𝑑𝑡 will be 𝐴ω 𝑐𝑜𝑠 ωt and 𝑑2𝑥/𝑑𝑡2  would be 

−𝐴ω2 𝑠𝑖𝑛ω 𝑡. Now let us put the quantities back in this equation in which case I will 

get, −𝐴ω2 𝑠𝑖𝑛 ω 𝑡+𝐴ω2 𝑠𝑖𝑛ω 𝑡 = 0, clearly this cancels one another out so you do 

get a 0. So, we have discovered one solution for our differential equation 𝑥(𝑡)  is 

𝐴 𝑠𝑖𝑛 ω 𝑡 
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We saw that we found out one solution which is𝐴 𝑠𝑖𝑛 ω 𝑡 the question is, are there other 

possible solutions without even much thinking could say that maybe cos function is also a 

possible solution. So, I could have by the same argument written down that 𝑥(𝑡) equal to 

let us say some 𝐵 𝑐𝑜𝑠 ω 𝑡 could have been a possible solution and in fact, you can verify 

that 𝐵 𝑐𝑜𝑠 ω 𝑡 is another possible solution as well. 

So, the hint for all this comes from the fact that the differential equation that we started 

with  

𝑑2𝑥

𝑑𝑡2
 + 𝜔2𝑥 = 0 
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is a second order linear differential equations, which means that in principle it should have 

two independent solutions. Let us say that I have two possible solutions for my differential 

equation which could be 𝑥1(𝑡) + 𝑥2(𝑡) 

So, when I say that 𝑥1(𝑡) and 𝑥2(𝑡) are linearly dependent I am making the following 

statement that 𝑥2(𝑡) is equal to some constant times 𝑥1(𝑡). So, in that case once I know 

𝑥1(𝑡), all I need to do is to simply multiply it by a constant I get 𝑥2(𝑡), but in this case 

what we require is that the two solutions should not be related by this relation. If they are 

not related by this relation then you would say that the two solutions are indeed linearly 

independent and again this is something you could verify for yourself that sin omega t and 

cos omega t are indeed linearly independent functions. 

So, at this stage what we have is, we were trying to find solutions for a second order linear 

differential equation and as dictated by the mathematics, we have found two linearly 

independent solutions, one of them is 𝐴 𝑠𝑖𝑛 ω 𝑡 and the other one is 𝐵 𝑐𝑜𝑠 ω 𝑡. So, in 

fact, you need not stop with this. In fact, you can also show that if I add 𝐴 𝑠𝑖𝑛 ω 𝑡 and 

𝐵 𝑐𝑜𝑠 ω 𝑡 that would also be a solution. I am not going to do that it is very easy and just 

the recipe that we did here in the previous case, if you follow that you should be able to 

show that 𝑥(𝑡) being  𝐴 𝑠𝑖𝑛 ω 𝑡 + 𝐵 𝑐𝑜𝑠 ω 𝑡 is also a solution.  
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At this stage we have a combination of two linearly independent functions 𝐴 𝑠𝑖𝑛 ω 𝑡 

and 𝐵 𝑐𝑜𝑠 ω 𝑡 with two arbitrary constants A and B, we will see how to determine them 

a little later. But this combination is a possible solution to the differential equation that we 

had obtained for describing the oscillatory function. Now, another question is this the most 

general function that would be a possible solution? The answer is no you can actually 

generalize it even further by adding a phase term as shown here. So, this ϕ that is written 

here is the phase and we will see what this phase is about, to understand phase let us cut 

down the second part and just stick to this simpler version of our solution. 
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Now, to understand phase here, let me also for comparison write down 𝑥(𝑡) =

𝐴 𝑠𝑖𝑛 ω 𝑡 Now, both these are possible solutions to a differential equation, in one version 

I have written down 𝐴 𝑠𝑖𝑛 ω 𝑡 and in the other I have written down 𝐴 𝑠𝑖𝑛ω 𝑡 plus 

this added function ϕ which I am calling the phase. 

So, to understand how this works, let us plot the solution. So, I am going to plot 

displacement 𝑥(𝑡)  as a function of ω𝑡 . So, let me first plot this function           

𝑥(𝑡) = 𝐴 𝑠𝑖𝑛 ω 𝑡 might look something like this ok. So, this is your 0, π & 2π 

Now, let me also plot this but before plotting the second one let us say that at 𝑡 = 0,𝑥(𝑡) 

corresponding to this case would be 𝜙 
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On the other hand, corresponding to this case at 𝑡 = 0,  𝑥(𝑡) would be equal to 0 or 

𝑥(0) would be equal to 0. So, they differ in their values at time 𝑡 = 0. So, if I have to 

plot this function now, let me plot it with the black pen at 𝑡 = 0 it is a non-zero value 𝐴 

is not equal to 0 and 𝜙 is also not equal to 0. 

So, let me say that at t = 0, this is my initial point and this is going to be something like 

this and to complete the picture let me draw it on the negative t direction as well ok. So, 

you could see that phase is basically this quantity here. So, it is the initial offset that you 

give with respect to a solution whose phase is 0. So, for the case of this red curve here this 

corresponding to this solution, the phase was 0. 

On the other hand, corresponding to this solution this one your initial phase was 𝜙 and 

that corresponds to this quantity here. It can be easily realized that if 𝜙 where 2𝜋 you 

are moving an entire distance corresponding to 0 to 2𝜋 and there would be no difference 

between a solution that has no phase and the one that has a phase difference of 2𝜋. 

(Refer Slide Time: 16:07) 

 

So with this understanding of phase let us put back the complete or the most general 

possible solution. So, I have written down the most general possible solution here as 

displacement as a function of time is A𝑠𝑖 𝑛(𝜔𝑡 + 𝜙)  and there is also the second 
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linearly independent function which is 𝐵𝑐𝑜 𝑠(𝜔𝑡 + 𝜙) and as we just saw 𝜙 is simply 

the phase and A and B are the amplitudes. 

And if 𝜙 = 0, the solution would simply reduce to 𝐴 sin 𝜔 𝑡 + 𝐵 cos 𝜔 𝑡 and these 

three numbers A, B and 𝜙 are arbitrary constants. And the information about these values 

of A, B and 𝜙 will have to come from the system that one is studying ok, it is not 

determined by the equation of motion itself. If you go back to the equation of motion, you 

will notice that there is no information about initial values in the differential equation that 

has to be provided as part of the problem ok. 

So, these three quantities would be in general called initial conditions. So, if you want to 

get a specific solution for a particular problem, you need to specify these initial conditions. 

So, in the tutorial section, we will see how these initial conditions can be provided and 

used in obtaining the solutions. 
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Now, let us get back to our solution once again. So, I will stick to one form of this solution 

which is A𝑠𝑖 𝑛(𝜔𝑡 + 𝜙). So, that is my solution for displacement. Now, starting from 

here, once displacement is given it is easy for me to calculate the velocity. So, I can write 

an expression for velocity which will be 𝑑𝑥/𝑑𝑡 and if I differentiate that would be is 

𝐴𝜔 cos(𝜔 𝑡 + 𝜙). And given the velocity it is again straightforward to calculate the 
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acceleration which will be 𝑑2𝑥/𝑑𝑡2 or second derivative of displacement with respect 

to time and that would be −𝐴𝜔2𝑠𝑖 𝑛(𝜔𝑡 + 𝜙)  

So, if you notice the relation between the displacement and acceleration you will notice 

that displacement and acceleration are proportional to one another with the negative sign 

that should not be surprising given the fact that we actually started from an ansatz which 

basically stated that restoring force is proportional to displacement with the negative sign. 

So, this is a sort of consistency check from that ansatz we went to write down a differential 

equation and from there we obtain the solution and finally, we see that it is indeed 

consistent with the ansatz that we started with. 

So, to have a pictorial understanding of these three quantities again let us plot these 

functions. So, let me start with displacement as a function of 𝜔𝑡 and for the purposes of 

plotting sketching this function I am going to assume that 𝜙 = 0, just a simplifying 

assumption and I am also going to assume that the amplitude A is greater than 1, I will 

also assume that 𝜔 is greater than 1. 

Now, let us sketch the function. so, this is 𝑥(𝑡) and the same scale let me see if I can plot 

velocity which I will call 𝑣(𝑡). So, this will be 𝑣(𝑡) as a function of 𝜔𝑡. So, this is a 

cosine function and I have assumed that A and 𝜔 are greater than 1. So, it is going to look 

something like this is of course, your  𝜋 and 2𝜋. 

Let me also sketch, acceleration as a function of time and this as we see here from the 

figure will be negative of displacement. So, I should have something like this so this is 

2𝜋, 𝜋 & 0. Let us pictorially look at the solution and what they really reveal. So, I have 

sketched displacement, velocity and acceleration as a function of time. 

So, let us see what they physically tell us. So, the first thing to notice is that at the point 

where say the displacement is a maxima that is precisely the point where the velocity is a 

minima this point here ok. So, how do we relate it to a real physical system like this? So, 

this is how say that my pendulum oscillates and if I look at it carefully the displacement is 

maxima at let us say somewhere here and that is precisely the position where the pendulum 

comes like this, momentarily stops and then turns back. 
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So, that is exactly the position where the velocity is 0. So, at the position where the 

displacement is maxima, the velocity is 0. On the other hand, you can easily figure out that 

as we pass the equilibrium position here so this is the equilibrium position when it is 

oscillating it passes through the equilibrium position and when you pass through the 

equilibrium position its displacement is 0, but nevertheless its acceleration would be a 

maximum. 

So, at the extremes where the velocity is actually changing signs because it is changing 

directions, velocity would either go from negative to positive or positive to negative. So, 

the acceleration would be largest. So, at the point where the displacement is maxima, the 

velocity at the corresponding time would be zero and at precisely the same time, the 

acceleration is a maxima. 

So, that is this position at the extremities either at this end or the corresponding end on the 

other side. On the other hand, if we analyze what happens let us say at this point here. So, 

here the position is 0, but the velocity is maximum and that is understandable because 

really the pendulum is passing through the equilibrium position and its velocity is the 

largest and here there is no change of direction, there is no change of sign in the velocity. 

So, in this case acceleration is indeed 0. 

So, the velocity would be maxima corresponding to this and acceleration would be 0. So, 

it would correspond to this. So, essentially what we see is that, at the positions where 

displacement is maxima your velocity is zero and at values of times when displacement is 

zero, velocity is maxima and displacement and acceleration have this relation that they are 

proportional to one another and there is a minus sign between them. So, we see that clearly 

in this sketch. 
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Next, we will try and evaluate the kinetic and potential energy of this of an oscillating 

system and again the starting point is we will start with one solution and I have taken one 

of the simplest ones as 𝐴 sin(𝜔𝑡 + 𝜙) and it is even simpler if I can even set 𝜙 equal 

to zero at the it would not change any of results. 

The kinetic energy is easy to write down. So, kinetic energy which I will indicate by KE 

simply half times mass into the velocity square which will be half mass into 𝑑𝑥/𝑑𝑡 

whole square and that is simply (1/2)𝑚  into (𝜔 cos(𝜔𝑡 + 𝜙))2  what about the 

potential energy?  

Potential energy is simply the work done by the system against the restoring force. So, this 

at this position, we have assumed that the potential energy is zero because we have said 

the sort of put the scale such that the zero of the position corresponds to the point where 

the pendulum does not do anything if left to itself. So, that will be the position where the 

potential energy is zero. 

But now when I try and move it on either sides let us say that from here I move it to this 

side, by act of doing this I have I am putting in some potential energy into the system. And 

how much potential energy have I put in that would be equal to the work done in moving 

it from here to this point, that much energy is stored in the system as potential energy so 

that when I leave it, it will use that energy to oscillate. 
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So, the physics of the problem is simple. So, this is its rest position, it has no energy no 

kinetic energy because it is not moving and it has no potential energy because we have 

said that at this point the potential is zero and when I move it like this a little bit sideways, 

I am putting in potential energy and the amount of energy is equal to the work done and 

moving it from here to here and when I leave it, it will start doing its work. 

So, the potential energy would simply be equal to the work done against the restoring force. 

So, that would be something like. So, in general when I write in terms of the stiffness 

constants, it is 𝑠 times 𝑥′𝑑𝑥'. So, I need to do this integral. So, so remember that this 

was our restoring force. So, all I have done is to multiply the restoring force by the distance 

that it moves which is 𝑑𝑥' and you integrate over the entire distance from 0 to x. So, you 

add these small products of restoring force multiplied by an infinitesimal distance 𝑑𝑥'. 

So, when you do this the integral is easy to do, it will be 𝑆𝑥2/2 and if I substitute this 

value of 𝑥  here. So, remember that x is a function of time, it will be equal to 

(𝑆/2)𝐴2 𝑠𝑖𝑛2(𝜔𝑡 + 𝜙). The total energy would be the sum of kinetic energy and the 

potential energy, all we need to do is to add these two expressions that we have. So, 

(𝑆/2)𝐴2 𝑠𝑖𝑛2(𝜔𝑡 + 𝜙) + (1/2)𝑚(𝜔 cos(𝜔𝑡 + 𝜙))2 

So, if we remember what we did in the first module, there is a relation between 𝑚𝜔 and 

the stiffness constant 𝑆 which is that 𝜔2 is equal to 𝑆/𝑚, if we plug in this relation and 

substitute for S here, this expression can be simplified and it would simply become 

(1/2)𝑚𝜔2𝐴2 and there will be this 𝑠𝑖𝑛2(𝜔𝑡 + 𝜙) + cos2(𝜔𝑡 + 𝜙) which will 

be equal to 1. 

So, the total energy is, I am denoting by E will simply be equal to (1/2)𝑚𝜔2𝐴2  So, 

you will notice that each of these kinetic and potential energy individually are functions 

of time because kinetic energy has this cos2(𝜔𝑡 + 𝜙) and potential energy has the 

sin2(𝜔𝑡 + 𝜙) . So, individually kinetic energy and potential energy they are time 

dependent, on the other hand the total energy is independent of time. 

So, mass, angular frequency, omega, amplitude all of them are constants. So, the total 

energy is a constant of motion, it does not change with time. So, what we have is an 

interesting model, kinetic energy is time dependent, potential energy is time dependent, 
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they change in such a way as to keep the total energy constant. The fact that energy is a 

constant of motion should also be physically appealing because in an ideal case where 

there is no dissipation in the system then the energy that you put in when you start off the 

oscillations like this would not be expended at all. 

So, you would expect that the total energy would simply be converting from kinetic energy 

to potential energy and back to kinetic energy and so on, but otherwise the total sum of the 

kinetic and potential energy would remain a constant. 

And if you go back and look at the equation of motion you would notice that there is no 

term in the equation of motion which takes care of the dissipation in energy. So, once again 

all this points out to the same fact that within the scope of the model that we had written 

down, there is no way the system could lose the energy. 
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Now, to summarize this module, we started by writing down the equations of motion which 

is this 

𝑑2𝑥

𝑑𝑡2
 + 𝜔2𝑥 = 0 
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and motivated by the physical phenomena of say an oscillating particle we guessed a 

solution, we corrected it for the dimensional problems and the most general solutions; that 

solution that we could write down 𝑥(𝑡) = 𝐴 𝑠𝑖𝑛(𝜔 𝑡 + 𝜙) + 𝐵 𝑐𝑜𝑠(ω 𝑡 + 𝜙) was  

And then we also saw that given a solution like this it is straightforward to calculate the 

velocity as a function of time, acceleration as a function of time. We also saw that there 

were systemic relations between the values of position, the values of velocity and the 

values of acceleration that an oscillating system takes. 

Finally, we calculated the total energy which turned out to be (1/2)𝑚𝜔2𝐴2. And the 

important part of this total energy is that it is indeed a constant of motion and it depends 

only on the square of the amplitude in other words, a fact that will keep using again and 

again later on is that energy of an oscillating system is proportional to square of amplitude.  

The fact that energy is a constant of motion should also be physically appealing because 

in an ideal case where there is no dissipation in the system then the energy that you put in 

when you start off the oscillations like this would not be expended at all. So, you would 

expect that the total energy would simply be converting from kinetic energy to potential 

energy and back to kinetic energy and so on, but otherwise the total sum of the kinetic and 

potential energy would remain a constant. And if you go back and look at the equation of 

motion, you would notice that there is no term in the equation of motion which takes care 

of the dissipation and energy. 

So, once again all this points out to the same fact that within the scope of the model that 

we had written down there is no way the system could lose the energy.  
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