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Lecture – 19 
Coupled Oscillators: More Examples 

Welcome to the 4th module, this 4th week. We are still looking at the coupled 

oscillations. In this module, we will look at two more examples of solving the coupled 

oscillator problems. 
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So, we started by looking at the problem of two pendulums connected by a spring. So, 

what I have in front of me, are the two equations of motion. To solve this particular 

system the sort of trick that we adopted was to add and subtract these two equations of 

motion. So, we got two equations of motion each of them corresponded to a single one-

dimensional harmonic oscillator. The important point is that we added and subtracted and 

this is not the way in general coupled problems can be done. Suppose, let us say that we 

have 3 different pendula connected like this, then we will not be able to do this trick of 

adding and subtracting equations.  
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So, there would be many other problems where the simple trick of adding and 

subtracting the equations will not work. So, the general approach was simply to assume 

exponential solutions. So, the important point is that this omega is the frequency angular 

frequency of motion and this is same for the entire system. So, whatever be the pattern of 

oscillations both the oscillators together display, the frequency of motion is omega. So, 

there cannot be a scenario where two pendula would oscillate with two different 

frequencies even when they are coupled together, so that cannot happen. So, that is the 

important point that we should note. So, from now on we will try and use this recipe for 

solving. 

So, once we have  and  chosen like this you calculate ,  and then  and , 

substitute it back in this equation that we have here and finally, what we will get is a 

matrix equation where the two unknowns are simply the amplitudes  and . So, we will 

demand that the amplitudes have non-trivial solutions that is they are in general not 0, 

 and .  
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So, that will give us the condition that the determinant should be equal to 0 from which 

we can determine the two frequencies. So, what you will finally, get are two frequencies 

which we had called normal mode frequencies. The pattern of oscillations displayed 

x (t) y(t) ·x ·y ··x ··y
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A ≠ 0 B ≠ 0
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collectively by both the particles in this case two pendulums they would be called the 

normal modes themselves.  

So, today we will do two problems, one where we have two particles and other where we 

have three particles.  
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So, here in front of me I have a system with two blocks whose masses are  and they are 

connected through a system of two springs with spring constant  and another one with 

spring constant . Now, once of course, you start giving it a little bit of push, they would 

start oscillating. So, I want to find out what are the normal mode oscillations and normal 

mode frequencies. 

Let us say that the displacement is  and in the case of second pendulum the 

displacement is . And I am going to assume in general without loss of generality that 

. The equations of motions themselves will not depend on whether  or . 

So, it really does not matter. Here is what could be the equations of motion  would be 

equal to. So, as far as the  block is concerned it is being pushed up by an amount , so 

the spring  has actually compressed which means that it is going to push down the first 

block which is opposite to the direction of motion. 
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So, that would give me . There would also be a force that arises from the second 

spring which is the  spring or spring with spring constant . In this case or the net 

compression or the elongation of the spring would be . We have assumed , 

which would mean that the second spring is compressed, so the second spring will favor 

in which case I should write the second one second term with the plus sign, so that would 

be the equation of motion for the first block.  

Now, let me write the equation of motion for the second block. So,  that is equal to as 

far as the second block is concerned, it is it is only in contact with the second spring with 

spring constant . So, the only force that is going to affect the second block will arise 

from the second spring, but the second spring itself is in contact with both the blocks, so 

it would depend on the displacement of both the blocks. So, now we have assumed 

. So,  is positive, so which means that second spring has undergone a 

compression and it is going to push it down hence it will be . Now, we will 

try and solve this system. Again now, there is no point in trying adding and subtracting is 

not going to work.  
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I am going to start by assuming that  and . And I would like to 

stress that when you make a choice like this  and , implicit in that is some 

choices already made for some initial conditions. Since, we are not really worried about 
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what kind of initial conditions for which we are solving the problem, we can simply 

choose initial, any initial conditions which is simple to handle because what we are 

interested is finding out the normal mode frequencies and the normal modes. 

So, I have written everything here. Now, all I need to do is to substitute it back in this 

equation.  
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So, if I divide throughout by , I will have terms like  and  on the right hand side, 

and similarly in the equation for  I will have . And to simplify that let me say that  

=  and  = . And if I put this in I am going to get the following equation of motion, 

            

Similarly,  

     

So, now we can substitute our assumed solutions here.  
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Let us substitute for ,  and  and if we do that this is the equation that we will have. So, 

these are the two sets of equation that I have and this one can now be simplified and I 

will write it in terms of coefficients of  and . Basically, I am going to separate out the 

terms with  and .  

Now, what is relevant for us is these two equations. I am going to write it in matrix 

vector product form. 
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So, now I have written this in matrix vector product form. And as usual let us do a 

renaming let us call this matrix  and this is  and of course, this is 0, so now I have a 

matrix vector product being equal to 0. Both  and  we should remember are the 

amplitudes, they should not be 0 in general. The condition for  and  not to be 0 in 

general is that determinant of  should be equal to 0, and determinant of  can be easily 

calculated. Now, I need to solve this. You will quickly recognize that this is a quadratic 

equation in the variable . So, if I multiply all the terms, arrange them in powers of  it 

should get the following equation.  
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Now, it is very clear that what I have is a quadratic equation in the variable . The 

solution would be values of  that is the one that I want. Now, all we need to do is to 

simplify this. I urge you to do it yourself and if you do everything correctly you should 

be able to get the following. 

So, here I have two possible frequencies  would correspond to say the plus sign and 

 would correspond to the negative sign. And so, remember that it is a fairly 

complicated solution that we have obtained, but it can be simplified provided we make 

some simplifying assumptions. Suppose for example, I assume that  and  are equal, 

that is both the spring constants are equal, if I make that assumption in such a case  
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would be equal to , in which case this would simplify considerably. So, here I have two 

possible normal mode frequencies.  
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To repeat in general when , the normal mode frequencies are given by this form 

and when  it simplifies and these are the normal mode frequencies.  
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The next problem is 3 blocks again connected by springs. So, in this case we have 3 

blocks connected by two springs. So, if we go by the intuition that we gained from the 
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last two problems, we should be able to figure out even without doing any further 

mathematics that in this case we should expect to see 3 normal mode frequencies. So, 

when we had a system a coupled system with two particles, we had two normal mode 

frequencies. And when we were dealing with single particles like the case of a single 

simple pendulum we had one frequency, so it is reasonable to generalize and anticipate 3 

normal mode frequencies in this case.  

And I am going to assume that the spring constants are same, both will be given by . To 

write the equations of motion I will assume that the displacements are ,  and  and I 

will even call these each of these particles as  particle,  particle, and  particle. And 

to write the equations of motion let me assume that , and .  

So, with this assumption let us write down the equations of motion. And once again let 

me emphasize that this assumption about which displacement is bigger or smaller will 

not change the equations of motion. So, it does not matter what you assume here.  

So, let us start by writing the equations of motion  will be equal to. So, in this case 

the first particle is connected only to one spring, but this spring is going to depend on the 

displacements of both the particles in which case I should get . Now, let us 

write the equation of motion for the second particle. 

In this case, the second particle is affected by both the springs on either side, so it is 

going to have additional term. Since, we have assumed ,  is positive which 

means that the first spring has elongated and is going to pull back the middle particle. It 

is going to bring it in this direction; hence I will call it . And what about the 

next spring? The second spring that we have here, in this case we have assumed that 

 which means that again it is an elongation and by similar arguments we can 

write for the last particle which is , in this case again it is in contact with only with one 

of the springs hence I will have.  
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So, let us assume that  and  and . So, we do the 

usual calculation, calculate  actually , ,  and also the second derivative of these 

displacements. And if you substitute it back in this equation that we have finally, it is 

going to give us the following equation. Now, this time I will not do all the steps, I will 

let you try and do it yourself. But if you do it everything if you do everything correctly 

you should be able to get the following matrix vector equation. 

So, I have written down the matrix vector equation. As usual we will call this as  and 

this is  and the same argument again goes through that for non-trivial solutions for ,  

and  we require that the determinant of .  
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I have written the equation corresponding to the determinant of  and you can easily see 

that the highest power of  that appears here would be 6. It would appear as  and we 

want to find out , so it is essentially a cubic equation. So, you should expect to have 3 

roots and 3 roots are the 3 normal mode frequencies.  

So, again I am going to let you solve for omega square for this, and if you do it correctly 

you should get the following. These are the 3 roots of this equation, and it is equivalent 

to saying that the normal mode frequencies  would correspond to 0,  and . 

So, I have done this problem by skipping many steps and I urge you to complete the 

steps in between. And as you can see it is a fairly routine exercise. The main ingredient is 

really to write down the equations of motion. Once that is done rest of it is fairly simple 

and the straightforward.  

In the next module, we will see how to obtain the normal modes for these cases, but as a 

last part of this module we will see some experimental demonstration of coupled 

pendulum.  
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