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Lecture – 18 
General Method of Solving for Normal Modes 

Welcome to the third module we are in the 4th week, and we started looking at a coupled 

Oscillations and we have progressed up to the point where we looked at the solutions of 

coupled oscillator and we understood that you could do a change of coordinate system in 

which the solution becomes very simple.  
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So, just to quickly do a recap of what we have been doing, we wrote down the equation 

of motion in the u and v coordinate system and once you do this what has happened is 

now you have two equations of motion which are uncoupled. So, the equation of motion 

for u does not involve the variable v and vice versa. So, you can immediately write down 

what are the frequencies ok; so, which is what is shown here. The trick in going from 

describing the equation of motion in xy coordinate system to the one which is described 

in terms of u and v was basically a following. 
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So, you did a coordinate transformation from x, y to u, v and most importantly this is the 

transformation u was  and v was . So, in some sense we are lucky to have 

been able to discover this set of coordinate system in which the equations became 

uncoupled. And once it became uncoupled it was straightforward to write down the 

solutions because each of the equation essentially looks like a one-dimensional simple 

harmonic oscillator equation.  

We introduced the term that these two frequencies  and  or what would be called 

normal mode frequencies and this  and  are simply called normal modes or 

normal mode solutions. And we also saw that since each of the normal mode does not 

interact with the other normal mode the energies of each of these is a constant and the 

total energy of the entire system is also a constant. Whereas, if you look at it from the 

point of view of x y coordinate system you will notice that the equation of motion for x 

involves y and vice versa; so, the individual energies are not conserved, but miraculously 

the total energy is a constant of motion. With this background let us today look at a way 

of solving this in general.  

As I said before we are quite lucky to be able to discover this set of coordinate 

transformation which uncouples the coupled system of equation ok, but there is no 

guarantee that the same coordinate transformation would work for any other coupled 

problem. In general, you need to each time find out a different set of coordinate 

transformation which will uncoupled provided it exists. So, here what we are going to do 

is not to guess or be lucky in our pursuit of these special kinds of coordinate systems we 

will write out a systematic way by which we can actually achieve this.  

x + y x − y

ω1 ω2

u(t) v(t)
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Let us continue with the same system that we have been using which is 2 pendula 

connected by a spring and I have here the two equations. Now, I am going to solve it 

differently from the way we did, I will not a priori introduce these magical set of 

coordinates. So, my starting point is this assumption that whatever be the frequency with 

which the entire system is oscillating it is doing with one particular frequency. So, let me 

explain it, but by first writing down the solution that I am going to assume.  

So, I am going to assume that  is  where  is one of the normal mode 

frequencies and  is . So, what is implicit in this choice of solution is that the 

entire system is oscillating with one particular frequency. So, physically that should not 

be very surprising simply because after all its one system coupled system and there is no 

way that the one part of the system can oscillate with a very different frequency from 

other part of the system. So, in general the entire system is oscillating with one 

frequency which is what is implied in this assumed solution.  

And also, I have made some assumption about the initial condition basically that the 

velocity is 0. If the velocity initial velocity is not 0 then I would have had to add 

additional phases to it but let us simplify the problem and assume that the initial velocity 

is 0. Now, all that I want to do is to substitute these things back in this equation. So, let 

us do that as the next step.  

x (t) Aeiωt ω

y(t) Beiωt
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So, now what I am going to do is to collect all the terms with A and B together and write 

out these two equations. So, now I have these two sets of equation is just rearranged 

from here to here. Now, you can see that I can elegantly write it in matrix form.  
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So, this is the matrix multiplies to this vector which has elements A and B and on the 

right-hand side I have 0 0, this entire matrix I can rename it as M and this vector I could 

rename it as . So, in matrix notation this would simply be M times  is equal to 0.  χ χ



Nontrivial solutions for the system of equations needs to exist to say that A and B should 

have non trivial solution which means that the solution should be something other than 0 

because if I put A equal to 0, B equal to 0 you will notice that it trivially satisfies this 

system of equations. And imagine if A and B are equal to 0 it simply means that 

amplitude is 0 there is no oscillation.  

So, that is not the solution that we want. So, we want some nonzero values for A and B 

and that will be satisfied if determinant of M is equal to 0. So, there is a standard result 

in linear algebra in case you are not aware of it I a huge you to go back and look at 

relevant chapters in any typical linear algebra book. For a system of equation like this a 

nontrivial solution for  will exist if determinant is equal to 0. So, I am going to calculate 

the determinant of M now and that is fairly straightforward to do.  

(Refer Slide Time: 07:56) 

 

So, I have written the expression for determinant of M, and it is set equal to 0 and I just 

need to solve it for the only unknown which is there in this equation which is . So, we 

know what is  we know what is . I just need to find out the unknown frequencies 

which I had started my problem with. So, this is one result again if you recollect one of 

the frequencies were simply  itself which is what we have got now.  

χ

ω

ω0 ωs

ω0
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So, I have the second equation, and this can be easily simplified, so this is my second 

frequency. And now when you compare these two results you will notice that this is 

exactly the result that we had got earlier around in the last module by just adding and 

subtracting the two equations from which we started with basically these two equations. 

But now, purely based on physical motivation that the whole system would oscillate with 

a single frequency, simply assume that the solutions are of the form  or some 

amplitude times  for x and y component. And then compute   substituted back and 

demand that A and B should give you nontrivial solutions. 

So, again you have two possible normal mode frequencies which exactly coincides with 

the result that we had got earlier. And finally, before I close this one might ask like, 

where are we seeing these kinds of coupled oscillators. In fact, most of the time you do 

see large number of particles oscillating together whether its sound waves or many other 

mechanical waves.  

In particular for example, one can think of simple examples like say the carbon dioxide 

molecule say this is a carbon molecule and maybe oxygen molecule here of course, there 

is no spring, but it’s the potential that is responsible for keeping them together and each 

of them could be oscillating. So, that is an example of a coupled oscillation and in fact, 

in this case you have 3 particles 1 carbon atom and 2 oxygen atoms. 

Aeiωt

eiωt ·x ··x



So, in principle you have 3 normal modes and 3 normal mode frequencies. So, its 

something that you can sort of generalize we saw that when you had when we had 2 

pendulums coupled by a spring because you have 2 particles finally and we ended up 

with 2 normal modes and 2 normal mode frequencies. And it’s also not too difficult to 

see that when you have things like these carbon dioxide molecules and so on you have 3 

particles and you would actually get 3 normal mode frequencies. In general, you should 

expect to see in N normal modes for an N particle system. And we will see some more 

examples of the coupled oscillations in the next lecture. 


