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Coupled Oscillators: 


Part 2


Welcome to the 2nd module of the 4th week. We are looking at coupled oscillations and 

this will be in some sense part-2 of the coupled oscillations. And, as usual before we go 

ahead let us quickly recap what we have been saying. By coupled oscillations we mean 

coupling together several particles. So, you can think of it as like several particles 

coupled by a spring for instance, but in reality you really do not need a spring or any 

such physical object to couple objects together, it is enough if potentials interact.


(Refer Slide Time: 01:03)





We looked at this example of two pendula coupled together by a spring of spring 

constant . The new thing that is entering the picture is that, when you disturb one of the 

particles in this system the other one is automatically going to get the disturbance sooner 

or later. So, both will start oscillating. So, you cannot treat one of them in isolation 

without considering the other. So, in other words what we have is a total system which is 

made up of say, two particles like we have it here in the slide or maybe it has some large 
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number of  particles, in either case you cannot treat it as  individual particles. It has to 

be treated in its totality. And what we did was to write down equations of motion for 

each of these particles.


So, we said that the displacement of the first particle be called  and the displacement of 

the second particle be called  and we wrote down the equations of motion 

corresponding to each one of this. So, in general we assume that,  is greater than  and 

we have these two equations of motion written together. And as usual we have identified 

this ,  is the acceleration due to gravity and  is this quantity which is the length of the 

string in the pendula,  which is like the natural frequency of the individual system is 

.


Now, with this the trick we did was to add the two equations and subtract the two 

equations and when we added the two equations and subtracted the two equations, we 

went to a new set of equations. And, to be able to do that all we did was to go from let us 

say this coordinate system which is described by  to a coordinate system which will 

be described by  and the actual transformation was that  is  and  is . 

So, when you do this transformation what you will see is that, this particular set of two 

equations will transform into these two sets of equations. 


And as you can see these two equations are now independent equations, in the sense that 

the equation for  does not involve  and the equation for  does not involve . So, it is 

like the 1-dimensional oscillator equation of motion that we saw earlier. So, we can 

straight away write down the frequencies. So, in the first, for the first case the frequency 

was this we did this identification, and for the second case the frequency is given by this.
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So, given these two equations of motion, we can straight away write down the solution 

because we dealt with this in the very first week itself. The solutions are simply  or 

 functions and in this case I will simply choose to use cosine function. So, I have 

written down the solutions here and there are these two frequencies  and , and  is 

related to . So,  will be  whereas,  will be , and  and  are the two 

phases.
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To go further I am going to make some choices for the amplitudes and the phases. So, let 

me take the amplitudes  and  to be simply equal to 2 times . So, I just want to make 

the amplitudes equal, so that it makes analysis easier and also again for the same reason I 

will also take  and  to be equal to , in which case these solutions would become 

 is   and  is . 


So, if you remember we had said that  is equal to  and  is equal to  and from 

this I can write an expression for  and ,  will be equal to  and  will be equal 

to . So, let me substitute these two expressions in this expression for  and  in 

which case I will get the following.
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I have these two expressions for  and  as a function of time and so, 2 can be cancelled 

throughout. So,  will simply be equal to . So, if I simplify it  

would simply be equal to  and similarly I will get another expression 

for  which will be . Now, we can use the  and  

formula and let us see based on using that formula what kind of dynamics we can 

interpret out of this.
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So, using cos a plus cos b formula the trigonometric identity, I would get the following 

relation and I can write a similar expression for , which will give me the following 

result.
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So, now we have expression for, if you remember,  and  are simply the displacements 

of the first and the second pendula. So, finally, I have managed to get the expressions for 

the displacement of each of those pendula this and this. We should plot both of them 
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together and see what it reveals. These look like the kind of expression we obtain for the 

case of the beats phenomena. So, there is one component which is going to be a fast 

oscillation especially if we make the assumption that  and  are nearly equal to  one 

another,  be much greater than .


So, if I assume that  is approximately equal to , in such a case  will be much 

greater than . So, with that assumption put in we would get what would look like 

beats.
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So, let us sketch that the fast oscillation would correspond to the higher frequency 

 and the slower oscillation which is shown in red would correspond to . 

So, if you look at the y oscillation again it has a component which is faster, which is 

 and there is the slower there is the slower oscillation which is given by this red 

profile which will be . 


Now, what you will see is interesting. When you compare the displacements of  and  

side by side you will notice that, at this point when the displacement of the  oscillator is 

nearly 0, the  oscillator precisely at the same time has maximum amplitude oscillations. 
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In other words, when you physically translate it is equivalent to saying that you have 

given energy to this system of 2 pendula connected by a spring and you set it to 

oscillations.


What is going to happen is, there will be times when one of the oscillators, let us say, this 

one is going to show you 0 displacement essentially it is going to remain at its 

equilibrium position and at precisely the same time the  oscillator is going to show large 

amplitude. And that is not the end of the story, it is going to go further and at some other 

time  oscillator is going to have larger amplitude somewhere, let us say, here and 

precisely at the same time the  oscillator is going to have 0 amplitude or 0 displacement. 

So, the totality of the picture is as follows.


So, both of them are, say, two oscillations and at some point when the  oscillator has 0 

displacement y oscillator has maximum displacement and conversely when x oscillator 

has maximum displacement  oscillator has 0 displacement. Now you can imagine what 

does it mean to say that the displacement is 0 the particle is not oscillating at all and in 

that case you could also verify that the velocity would be 0. So, which means that the 

kinetic energy of the particle at that point is also 0.


So, at these blue points the energy of one of the oscillators in this case, the  oscillator, is 

nearly 0 and the  oscillator has all the energy. So, initially you gave energy to both of 

them, but a point in time has come when  oscillator has nearly 0 energy, but  oscillator 

has all the energy, but at a later instant in time what you see is that, if you look at the red 

points here and the red point here you notice that, now all the energy is with the  

oscillator and the  oscillator does not have energy. So, this scenario is going to repeat 

itself in time again and again. So, the energy is going to keep shuttling between one 

oscillator to the other and back to the first oscillator and so on.
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When we finally, wrote down the equations for these two systems in terms of the 

transformed coordinate system, that is, these two equations, they are exactly like the one-

dimensional oscillator equations that we had seen much earlier on and that is the case for 

which we argued that, since there is no mechanism to dissipate energy, energy is not lost, 

energy is a constant of motion. So, here, the same story applies that the total energy is 

still a constant, but it keeps moving between the first oscillator and the second and back 

to first oscillator and so, on.
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In the first set of equations where we describe these coupled oscillators in terms of x-y 

coordinate system and the second one we just use the transformed coordinate systems in 

terms of  and . So, if you look at it from the perspective of  and  oscillator, the 

energies cannot keep shuttling between the  and the  oscillator because  and  are two 

independent oscillators. They do not interact with one another that is what we see when 

we look at these two equations, again remember that each one of them is like an 

independent one-dimensional harmonic oscillator their frequencies are different. 


So,  is an independent oscillator,  is another independent oscillator whatever energy 

you initially put in  and  will remain in  and  modes forever.
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So, let us write down all these consequences. The two new coordinates that we wrote 

down  and  would be called the normal coordinates or normal modes and as we had 

already seen these new coordinates  and  are related to the old coordinates  and , the 

difference being that in the  and  coordinate system the two oscillators are coupled, but 

in  and  they are uncoupled.


So, it is a special coordinate system, we will give a name for that. So,  and  together 

would be called normal coordinates or  and  would be called normal modes or 

the pattern of oscillation given by  and  would be the normal modes. And 
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similarly we also saw that there were two frequencies, one associated with the  mode 

and the other associated with  mode. The two frequencies are  and corresponding 

to  and  mode and these two are called normal frequencies or normal mode 

frequencies. And these frequencies are clearly different from the frequencies of the one-

dimensional oscillator.


So, in this case, it so happens that  mode or one of the modes corresponds to the 

frequency of one individual pendulum and the second one of course, takes into account 

the presence of the spring in between the two pendulums. And, I can associate let us say 

energy  with the  mode or let me call it  and energy  with the  mode.
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Total energy of the entire system will not be a function of time and the constant value 

would be . On the other hand, I can do the same thing with  and  mode as well. 

So,  and  would be the total energy which would be a constant but very crucially 

each of this  and  themselves will not be constant.  would be a function of time 

and  would be a function of time. But, the sum of  and  would be a constant 

independent of time whereas, when you look at it from the point of view of the normal 

modes, and their associated energies. Again let me repeat the associated energies being 

 and . Each of them is a constant and the total energy is also constant. 
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So, in the normal mode coordinate system there is no interchange of energy between the 

two modes, each one acts like an independent oscillator. You will realize, that our 

method of analysis dependent on being able to see that by adding and subtracting the two 

equations of motion, we were clearly able to take coupled equations of motion into two 

uncoupled equations of motion that was a trick that we employed. Now, it is not clear 

that if I write out more complicated, I mean, if I analyze more complicated couple d 

systems this trick would always work. So, we need to find a general way of dealing with 

such coupled system and this is what we will do in the next module.
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