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Lecture - 12

Resonances


Welcome back and this week we will continue with our study of forced oscillator. And, 

in this module in particular we will look at Resonances and as usual we will first begin 

with the quick recap of what we did in the previous module.
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So, we started by writing down the equation of motion for a forced oscillator, which is 

this once again to remind you, the forcing or the external forcing really come from this 

term here and  is the frequency of forcing. And, this  as usual is the term that 

represents dissipation in the system. And, of course,  is the stiffness coefficient that 

provides the ingredient for oscillations in the first place.


So, together this entire equation in mathematical terms would be called non-

homogeneous, second order because it involves  and it is an ordinary differential 

equation, meaning that it is not a partial differential equation ok. And, what we know 

purely as a mathematical problem for class of these kinds of differential equations is that, 
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when we try to right out the solution. The solution has actually two different parts to it; 

one is what is called the complimentary part, which I have represented by  here.


So, this complimentary part would be the solution of the corresponding homogeneous 

part, which would mean that it would be the solution of let us call this equation 1, it will 

be solution of equation 1 with  being equal to 0. So, which is simply the standard 

damped oscillator that we have already seen and we already know those solutions. In 

particular the solutions there come with the exponential damping factor. And, there is a 

second part of the solution, which is called the particular solution, which is denoted by  

here.


So, this particular solution is any solution of equation 1. The general solution which is 

denoted by  as a function of  here consist of these two parts; the complimentary part 

and the particular solution, while this is the mathematical sort of description of the 

solution. We also know that from very physical considerations complementary part 

corresponds to damping solutions, which means that they would die away after 

sometime. So, physically they are called transients. So, you would remember that they 

all come with this  multiplied to something. Particular solution would be what is 

called the steady state.


The reason for that is if I have an oscillating system and it has its own natural frequency 

of oscillation given by the parameters. Now, if I try to externally oscillate it by giving 

something like  or some other external driving. So, what would happen is that 

in general the system would adjust it is rhythms. So, that ultimately after sometime, it 

would oscillate at the same frequency with which I am driving the system. So, in that 

state the transients have died out, what is left is steady state oscillations.
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So, in this specific case where the forcing is  like the way it is written here. In 

that case we worked out the solution for displacement and for velocity as a function of 

time. If, you compare with the forcing which is , you would notice that  

displacement as a function of time comes with the a . So, clearly there is a  

difference phase difference between these two functions, between the forcing and the 

displacement. In addition there is also an additional phase difference of .


So, you can always adjust  to be 0, but still there would be a phase difference of  

between the forcing and the displacement. And, the other hand if you look at, if you look 

at the velocity as a function of time. So, there is a there will be a phase matching 

between the forcing and the velocity provided . If,  there will be a phase 

difference of  between the forcing and the velocity. So, you can take forcing to be a 

 or in general some arbitrary time dependent function, which can be resolved in 

terms of cosines and sins, but ultimately the qualitative results would remain the same.
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Today, we will start by looking at some unusual novel phenomena that would appear, 

when you have both damping and forcing in a oscillatory system. But, before we do that 

let us take a closer look at this equation ok. So, I have the solutions written down here. 

And, if you look at the first one which is the displacement as a function of time, you will 

notice that there is a  in front of it. And, again from the fact that let me write  we 

know that this is equal to . 


And, if I need  it will have to be  will be equal to . So, all you need to do is to 

substitute  by  and you will get this result. So, which means that now I can rewrite 

this displacement as a function of time, by absorbing  in the exponential. So, it would 

be . So, remember that earlier on we had said that between the forcing 

and displacement, there is always a phase difference of  even if .


So, clearly that comes out and it is consistence with that expectation. We would like to 

look at the phase factor  as a function of driving frequency . To do that let me once 

again and also to remind you let me write the expression for . So, we want to look at 
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this and to do that I need know what is . And,  is . And,  is equal to 

.
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So, let us see first what could be the range of . So, if  goes from let us say 0 to. So, 

this my  axis and if it goes from 0 to some really large number ok. In principle 

theoretically you can think of it as infinity. In that case what would be the extremities of 

 itself. So, let us say let us put  here in this equation, if you do that as  tends to 0 the 

dominant term would be . So, it would give me . So,  corresponds to 

. So, phi which will be on the  axis will run from  to some large value, which 

will be determined by the value of  at the other end.


So, as  tends to infinity this expression will again be dominated by , because  

would tend to 0 as  goes to  and  would tend to . So,  would be . So, 

this goes from  to plus . And, somewhere in between when the quantity inside this 

bracket here is equal to 0 than  would be equal to 0. So, that would happen somewhere 

here and when that happens  would be equal to 0. If  and this implies that 
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And, we know that  is what we attribute as a natural frequency of oscillation and we 

will denote it by . So, this is the point where  is equal to let us say , which is equal 

to . So, we have everything in place all we need to do is to simply draw the figure. 

And, so, now, we know that the figure is such that it goes from  to , what remains 

to be done is just to determine how it goes, I will leave it to you as a problem. So, you 

need to figure out whether from here it goes like this, or it goes like this, or it goes more 

like this.


So, here you just need to find out the slope of  as a function of  and find out it is value 

at . And, if you do that it will turn out that for small values of , it indeed is very 

close to 0; in which case the expected figure would look something like this. And, in 

principle one could also draw. So, for instance if I denote the first curve that I drew by  

and this by , than then in this case  is larger than . 


And, also it is easy to figure out that in this part where the value of  is negative velocity 

leads  in phase. In other words the phase of velocity leads the phase of the external 

forcing. On the other hand in this region  is positive it goes from 0 to . In, that case 

velocity lags  or more precisely the phase of velocity lags that of the forcing term. So, it 

gives us a global picture of how the phases or the phase difference between velocity and 

the forcing plays out as you vary parameters ok.
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So, I have the solution for velocity as a function of time here. So, irrespective of what 

initial conditions we might choose and so on and so forth. The amplitude of the velocity 

would still be given by this quantity .  is a constant you really cannot change it, 

because it is a given as part of the problem you cannot change the value  in the middle 

of the problem. But, what you can actually change is this quantity  impedance, 

which depends on the driving frequency . So, you can actually tune the driving 

frequency.


So, in that case the question would be how does the amplitude of velocity?. The 

maximum of that behave as a function of the driving frequency. So, if this is my , 

how does  change as a function of driving frequency ? So, that is the question. 

And, it is very easy to see from the expression for  that the maximum value of 

amplitude will, will come when the denominator is minimum, in a other words the 

maxima of  will happen when  is minimum. And,  itself will be minimum 

when of course, when both this  and these 2 terms are equal to 0, but then we know that 

we assumed that there will be a dissipation. 
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So, . In which case,  will be minimum when this quantity . So, let 

us rewrite it slightly differently. So,  as a function of  is , which will be equal 

to . And, this by a small rearrangement, I can rewrite it as  divided by 

 plus take  out, in which case you will get .


And, if you remember  is are  or what we call the natural frequency of the system, in 

the absence of dissipation, in the absence of forcing right.. Then, I will just change the 

notation in which case this expression would become . So, this is 

 and it is a function of . So, now, we have this in nice functional form we can now 

sketch this. 


So, clearly the maxima of this quantity will happen when . So, let us sketch that. 

So, I am plotting  as a function of . And, from the expression that I have here it is 

very clear that when let me call this point . So, that would be the point at which 

the maxima of  will occur. And, for any other value of driving it is going to 

decrease and forgotten a 2 here. So, it is going to decrease quadratically. So, the 

functional form would look something like this. So, curve of this type is called the 

resonance curve.


So, it tells me the following important physical information. So, I have a damped forced 

oscillator, I keep driving the system and let us say that I varying the angular frequency of 

the external drive. So, at some point when the frequency of the external drive is equal to 

the natural frequency of the system, the response of the system is going to be large is 

going to be responding the greatest, when the external driving frequency matches the 

natural frequency of the system ok. For any other value of drive frequency, the response 

is going to be really-really small and it is going to drop off quadratically.
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So, this is what would be a resonance curve for velocity one could ask similar question 

of displacement as well. So, we can think of displacement resonance. So, this is velocity 

resonance. So, physically when we say that velocity resonance is happening, it means 

that the velocity of the oscillating particle is going to be the is going to be a maxima ok.
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So, before we look at the displacement resonance let us as we did for case of velocity, let 

us first look at how  changes with the angular frequency. So,  is the phase difference. 

And, of course, I have the standard driving term here given by  and I have the 

displacement as a function of time. So, here I have absorbed this  which is here in the 

exponential and so, it shows up as a phase factor. Remember that in one of the earlier 

modules we said that when you multiply by , it is equivalent to turning the vector by .


So, when you multiplied by  is equivalent to adding this phase of . And, of course, 

 is what we already have all along right. So, now the total phase angle would be the 

following. So, as usual you subtract this  and  that goes away. So, the total phase 

angle is , where as just the phase angle alone would be simply  itself.


So, now, let us since we want plot  versus the angular frequency , let us first look at 

the range of these quantities. Let us sketch the total phase angle let me write it here total 

ϕ ϕ

F0eiωt

−i

i π
2

−i − π
2

|Z |

iωt iωt

−ϕ− π
2 ϕ

ϕ ω

153



phase angle; I am going to sketch this as a function of  on  axis. And, I can also plot  

just the phase angle on right hand side.


So, if you remember from our previous arguments  goes from  to , because the 

expression is still the same, whether it is velocity or displacement  will still go from 

 to . So, let us say that here it will go from  to . On the other hand when  

is equal to  the total phase angle would be simply equal to 0, that is because you 

simply substitute  here in the value of , that will just give you 0 and when  is equal 

to  it will give you .


So, the value here would be equal to . So, now, all we need to do is to simply plot the 

functional form of this . So, here again I leave it as an exercise for 

you to do it yourself, but the curve should look something like this ok. And, here this the 

point where total phase angle is 0 right.


So, imagine if total phase angle is 0 this quantity here is 0, which means that 

displacement and forcing are in phase. So, that is the point where, displacement and 

forcing are in phase the phase difference between them is 0 and this would be a point 

where  would lag in phase with respective to that of  and again here  would  lags .


So, with a little bit of thought you can figure out these differences in a phase between 

displacement and forcing. And, here I am not going to draw the case for two different 

values of , again I leave it to you as an exercise to draw similar function for two 

different values of , where 1 is greater than the other. Now, with this let us go to the 

question of displacement resonance. So, the question there is identical to what we asked 

when we looked at velocity resonance.
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So, I have the solution for displacement as a function of time and you will notice that 

maximum amplitude would simply be , let us write that  would be . So, 

here again the question is same, if I were tuning  if I were changing the frequency of 

driving.


How would  change? So, remember that unlike in the previous case here the 

question is slightly little more complicated, because you have a  here, but there is also 

 inside this . So, we need to minimize this function with respective  ok. As usual 

the argument is that would be maximum when the denominator is minimum, the 

denominator here is .


So, since we want to find the minimum of the denominator here, what we need to do is to 

differentiate the denominator with respective  set it equal to 0 and find the value of . 

So, we can do this has a spot of one of the problem, but if you do it which is straight 

forward to do the result that you will get is that  ok where,  is  which 

is called the natural frequency of the system without either damping or the forcing.


So, with this ingredient we are sort of ready to sketch the displacement resonance curve. 

So, here you notice that the resonance or the maximum value of a  happens at; not 
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at , but at a value of a frequency, that slightly below . So, you could see that it is 

. So, what we are going to get is a series of a curves, that would look like this let 

me sketch them for you now. I have sketched the displacement resonance curve. 


So, you will notice some important features; one is the maxima takes place maxima of 

displacement happens at a value of  which is less than . And, it changes with  as 

well as you increase dissipation the maximum value of course, decreases, which is what 

you would expect naturally from just the physical intuition. Just to interpret this curve 

physically it tells us that, if you have an oscillating system which is both damped and 

you are driving it with some angular frequency. And, if you are changing the angular 

frequency then the response of the system would be greatest, the response here is 

measured in terms of the amplitude of the oscillation. 


The amplitude of the oscillation would be largest at a value of driving frequency, which 

is slightly lesser than the natural frequency of the system. So, this would be called 

displacement resonance or simply resonance. To summarize this module, what we saw is 

we looked at both the solution at we obtained for the driven damped oscillator, both the 

solution meaning that we looked at the displacement as a function of time and velocity as 

a function of time. And, we tried to closely see what happens if, if I tune the angular 

frequency with which I am driving the system.


So, you look at the phase difference between velocity and the forcing as a function of  

and that is what is sketched here in front of you. So, there is a range of frequency values 

below , which is the natural frequency where velocity leads  in terms of phase and if 

driving frequency is larger than the natural frequency  velocity lags driving frequency 

in phase. And, that is as far as velocity is concerned and we also looked at the idea of 

velocity resonance.


So, you ask what is the maximum amplitude of velocity, how does it change with driving 

frequency? Interestingly it turns out that when the natural frequency is equal to the 

driving frequency velocity is the amplitude of velocity is maximum. And, exactly 

identical questions can be asked about displacement as a function of time. So, we did 
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that. So, we looked at how the phase angle varies as a function of  So, again that is 

the curve that is sketched in front of you here and we also looked at the idea of 

displacement resonance ok.


In the next modules we look at how we can quantitatively describe these resonances. So, 

we will be coming back to the idea of  values or  factors that we saw earlier.
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