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Lecture - 11 
Forced Oscillator: Part 2 

This is week 3 of this course, welcome to this session and we are going to look at Forced 

Oscillator this week. All the while in the first week, we saw about the simple harmonic 

oscillator and its properties. In the second week, we looked at the damped oscillator and 

various properties. Just to quickly recap what we had been doing in the last week. 

(Refer Slide Time: 00:46) 

 

We wrote down the equation of motion for damped oscillator, which is this and to remind 

you again this  here is the dissipation coefficient. And, we also obtained the solution for 

this equation of motion. And, depending on the value of the quantity here inside the 

square root, you either get damped oscillation or you simply get no oscillation at all. 

γ
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So, in other words I have tried to summarize what we saw? So, there was the first case 

which we simply called as case of heavy damping. So, that happens when this condition 

is satisfied, this one here and, in this case the displacement as a function of time is shown 

here. So, you give it a push it goes to certain distance and comes back towards the 

equilibrium position. 

There is a second case when which is called the case of critical damping and it is 

characterized by this relation between the parameters. So, in this case again, there are no 

oscillations on the other hand if you had chosen your parameters which satisfy this 

relation, in that case you get damped oscillations and it is sketched here. So, you see that 

you do have oscillations whose amplitudes successively are reducing. So, what you have 

is damping energy is being lost from the system. So, these are the three possible cases, 

we saw in the case of damped oscillator. 

It only means that left to itself the system would simply dissipate the energy to the 

surroundings, but you can maintain the energy by giving it continuous supply of energy, 

which is what you do for instance in a clock with a pendulum as such without an external 

source of energy either from a battery or in a more mechanical clock one actually turns 

the key and so on which stores the energy and supplies it. So, if you do not do any of that 

the clock would not work beyond a few seconds. But, when you supply energy you can 
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make it work and it does give periodic oscillations, which is what the remit of this 

module, which is to look at the forced oscillator. 

(Refer Slide Time: 03:22) 

 

So, essentially we need to model the idea that we are continuously giving it energy. And, 

here if you look at the equation of motion that I have written down, it looks very similar 

to the damped oscillator except for this part on the right hand side. So,  is the 

amplitude of forcing. So, this term on the right hand side, tells you that you are 

supplying energy as a function of time. 

So, in this case the model that we have written down says that  is the amplitude of 

oscillation and there is a cosine or  attached to it. So, the external force that you 

are supplying oscillates in a sinusoidal manner. The difference between the damped 

oscillator and the forced oscillator is what is given here on the right hand side. So, this is 

the case of equation of motion for a damped oscillator. And, this one is the equation of 

motion for a forced and damped oscillator and for short, we will just call it the forced 

oscillator. 

The first question that we will be asking is why did we choose this particular form of 

forcing, this particular form of external forcing, it could have been anything else. So, the 

reason is I could have chosen it as  or  or even much more 
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complicated function. So, in general it could have been some function of time not 

necessarily cos or sine. But, the good thing about this is that if I choose any arbitrary 

function, I can always decompose it in terms of sin and cosine functions through what is 

called a Fourier transformation. 

And, if I do that in general the central and the simpler problem that I need to solve is 

what is written here essentially this. So, if I can solve this I have essentially solved a 

problem for a general forcing which is  ok. So, it is enough if I know how to solve a 

cosine or sin kind of forcing. 

So, that is the first aspect that we should keep in mind it is not very restrictive. In fact, 

we are trying to solve a fairly general problem. Now, we are interested in solving this 

equation. 

(Refer Slide Time: 06:13) 

 

So, let us see how we go about solving this equation, which is essentially what we are 

going to do in this module. 

So, I have both the versions of oscillator. So, this is damped oscillator on the right hand 

side and on the left hand side, I have the damped and forced oscillator. This damped and 

forced oscillator is what would be called non homogeneous 2nd order ODE. So, ODE 

stands for Ordinary Differential Equation. In contrast to an equation like the case of 

F(t)
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damped oscillator here, this is a class of what is called homogeneous 2nd order ordinary 

differential equation. 

So, these are two distinct classes of still 2nd order ordinary differential equations. And, 

now to solve the case of forced oscillator, what we know from this class of differential 

equation is that the general solution for this class could be written like this,  let me 

write it as . So, here  is let me give numbers to it. So, let me say that this 

is equation 1 and this is equation 2,  is simply the solution of equation 2 and  is 

any solution of equation 1. 

But, we know the solution of equation 2 already, because we solved it and we had 

written down and analysed it in the previous modules. So, whatever we had already 

solved for the damped oscillator would be part of the general solution for the forced 

oscillator. So, this is called the complementary solution, which is why I had put this  

here and this  is called the particular solution. 

So, the general solution of a non-homogenous 2nd order ordinary differential equation 

consists of two parts; one is the solution of equation 1 with the right hand side set to 0 

which is simply the solution of the corresponding homogenous part plus you somehow 

find out any one solution for the full forced oscillator. You add these two components 

together and that shall be your general solution. 

In the context of the kind of oscillator problem that we are looking at it we can look at 

this solution in a little physical sense,  here is simply the complementary solution. And, 

this complementary solution is just the solution of the damped oscillator. And, what we 

know from the damped oscillator solution is that, like we just did a recap of those in all 

those cases whatever be the various parameters that you might choose as time tends to 

infinity, there is no oscillation in the system. 

So, if you even for this case if you wait for long enough time the oscillations would have 

died down. So, in all the cases that we meet the oscillation does die down and clearly the 

reason is because  has this  term and this kills oscillation as time tends to 

infinity. 

x (t)

xc(t) + xp(t) xc(t)

xc(t) xp(t)

c

xp

xc

xc(t) e−pt

135



So, if you wait for long enough time, you would not see any oscillation. So, this kind of a 

behaviour is what would be called transient. The reason it is transient is because you do 

get oscillation, but it stays only for a short time for a particular choice of parameters. 

Now, what about this second part ? 

So, in this case again we need to see what is it that is physically happening in the 

system? I have an oscillatory system and it is getting damped, because of dissipative 

forces, but I am trying to give it some energy externally and the process of giving it an 

external forcing is modulated by a cosine function. So, there is a frequency  with, 

which I am driving it. It is like imagine a physical situation like you go to a garden and 

there is a swing. And, every now and then you give the swing a push to keep it 

oscillating. 

Now, the frequency with which your doing is the so, called driving frequency and here 

this  is the driving frequency. Now, ultimately if you are doing this just imagine, what 

would happen to the system. The system has it is own dynamics in the sense that if you 

do not disturb the system, it will oscillates at it is own frequency, you can call it the 

natural frequency of the system, but now you are trying to interfere and forcing a 

different kinds of frequency on it. 

So, ultimately there would be sort of come negotiation between these two opposing 

forces and finally, after some amount of time the system would precisely oscillate at the 

frequency at which you are driving it. So, what you can expect from the second part of 

the solution which is called the particular solution is that, maybe there would be sort of 

steady state established; between these two opposing tendencies or these two tendencies, 

which are not quite in consonant with one another . 

So, you could expect steady state as a possible solution. So, just to keep this in mind let 

me repeat that the complementary solution is a transient which dies away after sometime. 

Simply, because oscillation or a small movement away from the equilibrium dies off 

very fast. And, after that there is no contribution from this term which is represented by 

. On the other hand the particular solution is a steady state solution, because it is 
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equivalent to saying that the system finally, responds to your driving and it also beings to 

oscillate with the same frequency as the one with which you are driving it. 

And to complete the story on the right hand side; so, the solution of the damped 

oscillator I will take it as  and we have seen all these properties earlier on. Now, 

with this understanding we are going to concentrate on the steady state solution, namely 

what happens to forced oscillator as time tends to infinity. So, we are not so in so much 

interested in the transients, which are anyway going to died down after a short amount of 

time; we are interested in what happens in the long time limit. So, we will be interested 

in working out this solution  for the case of forced oscillator ok. 

(Refer Slide Time: 14:36) 

 

Let us now solve this equation of motion. And to solve this equation motion, I am going 

to do it a little more generally let me write the equation of motion here. In the way I have 

written down this equation, the right hand side is a complex number and I shall assume 

that  and  are also complex quantities. I am going to assume an ansatz for the 

solution  and as we just now discuss; if I wait for certain amount of time until the 

transients die down and so on and so forth. 

After, that you will see that the system also will display oscillation with the angular 

frequency . In which case, it is perfectly fine for me to assume that the displacement as 

xc(t)
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ω
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a function of time is some ; amplitude again remember that it will be complex because 

 itself is a complex number, . Once I know this I am going to compute which 

will be  and  will be  will be -1, . Now I need to plug in these 3 

quantities back in this equation and find out for what value  all this is satisfied. 

So, if I do that you can cancel out  on both sides I should be able to get the following 

equation. So, little bit of manipulation would give you this form of . Now, I am going 

to manipulate it little bit I will multiply and divide by . So, you would have now 

understood as to why I did this, because I wanted to get this form in here. And, if you 

remember the quantity that we have here in the denominator looks like the definition of 

impedance that we saw in the previous module and it is indeed the impedance that we 

defined in the last module. 

So, I can write this as , where this quantity  is. So, you should remember that   

being the impedance complex quantity as we see here. And, now we have the amplitude 

which is also a complex number in a form that is somewhat useful for us to now write 

the solutions. Now with this I am nearly done can write the solutions. So,  for 

example, would simply be  which means that it is. So, I have obtained a solution 

which is displacement as a function of time. 

And, to make this little more meaningful and explicit, I want to write  in a slightly 

different form impedance which is  remember that it is a complex number. I can write it 

as  we will define what  is shortly, but if this is the complexed number which is 

the impedance it is easy to figure out what  is we have done these manipulations again 

in the previous module. Now, let me insert this in my expression for  and this will be 

. 
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So, now I have the solution for displacement as a function of time. 

So, I have the solution for displacement written here and  which is a magnitude of 

impedance is also written here, and  from which we can actually extract  would be 

given by . So, we have everything in place to explicitly say something about the 

displacement, which is given by this formula. Now, let us look at the solution a little 

more carefully. 

So, the first thing is that as we expected, it turns out that the displacement as a function 

of time is an oscillatory function and the frequency of oscillation is , which is actually 

the frequency with which you are driving the system remember that you have this  

here. So, you drive the system externally with frequency . And, finally, the system also 

responds in the same frequency displacement has the same oscillatory frequency . And, 

just to make some comparisons let me say that my external forcing is . So, 

frequencies match, but what about the phases. 

So, you would see that the displacement and the external forcing they are not quite in 

phase with one another. So, the first thing that you notice is that with respect to the 

external forcing displacement  has this additional phase which is  attached to it and 
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the magnitude would depend on the value of these parameters  and . So, there will 

always be a phase difference of  between the external forcing and the displacement in a 

forced oscillator. 

So, the first lesson is that the external forcing and displacement, they have the same 

angular frequency. Second lesson is that there would be a phase difference of  between 

forcing and displacement and that you can figure out from these two equations, one for 

 and the external forcing which is  so, this and this. 

And, another point to note is that suppose even by chance if  were equal to 0 still there 

would be a phase difference, because of this because of this  term which is here. That 

would that would ensure that still there is a phase difference of  at least between the 

external forcing and the displacement. 

So, even if  is 0 you can always choose parameter such that  is 0, but even in such a 

case there would be a phase difference of  between the displacement and the external 

forcing. In fact, more precisely displacement would lag by a phase of    with respect to 

external forcing. The maximum amplitude of displacement is , which is given here. 

So, with these 4 sort of basic lessons that we have learnt from the analysis that we did, 

now we can go and actually write down an explicit form of solution which is which more 

or less conveys everything that we have tried to infer here. 
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Let me say that now I am trying to solve this problem . So, I 

want to solve this problem specifically for the kind of drive that is written here, which is 

. If, you go back and look at the problem that we actually tried to solve for the 

forcing there was , which means that it is actually . 

So, in some sense we have already solved for both cosine and sinusoidal driving all we 

need to do is to isolate the solution only for  kind of driving. So, all I need to do 

is to copy the result that I have obtained for the displacement, let me write that down to 

begin with. So,  was and this is the solution that we had. So, again let me emphasize 

that  is the complex quantity, which means that this could have been written as let me 

now multiply  inside in which case I will get , and ;  when 

multiplied would give me  and that would simply boil down to this. 

All, I need to now do is to recognize that this  which is the particular choice that 

I made for the external driving and I need to correlate with the kind of external driving 

that I have put in here. So, this will be  t. So, the correct solution 

that I expect should all be imaginary part of the solution, because the forcing here 

appears in the with the  here, which means that for this form of external driving. Now, 

m ··x + γ ·x + sx = F0 sin ωt

F0 sin ωt

F0eiωt F0 cos ωt + iF0 sin ωt

F0 sin ωt

x (t)

x
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ω |Z |
−cos(ωt − ϕ) −i

+1
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F0(cos ωt + i sin ωt)

i
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the solution can be written as  is equal to  into of course, there is a minus sign 

. 

So, now, it is very easy for me to generalise the result, if forcing is of the form , 

then my solution is . On the other hand if forcing is . In 

that case the solution  would be the real part of this one which would simply be 

. 

So, as I said we have solved two different problems when we treated this as a complex 

quantity, having obtained the displacement as a function of time. Now, it is easy to also 

find the velocity as a function of time. 
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The velocity as a function of time which I am indicating by  would simply be the 

first derivative of this function, that is  will give me  and . And  and  

would cancel  is  combined with the minus sign, there I will simply have

. 
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So, this is velocity as a function of time. So, once again we can ask what if my forcing is 

 and . So, if forcing is . I just need to take the imaginary part 

of this quantity. And, in that case  would be equal to . 

And, similarly if external forcing is , in that case  will be the real part of 

this result, that will be  with this, we have obtained the solution for 

velocity. 

So, now if I analyse these expressions for velocity a little more closely you will see that 

between the forcing that I have and the expression for the velocity that I have obtained 

there is always a phase difference of . So, whether you take your forcing to be  

or , in either case there is going to be a phase difference of . 

So, the velocity and the external forcing would have would differ in phase by , but if 

you choose parameters such that , in that case the forcing and velocity would be in 

phase with one another. 

Again it does not depend on what form of forcing that you choose. And just to remind 

you once again  is given by . So, if you want to find , we just need to take tan 

inverse of this quantity. To summarize let just collect the results together, we solved the 

equation in complex form. So, we have results for both kinds of forcing  and 

. 
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So, let me for example, assume that forcing is , if this is the external forcing 

now my equation of motion would be . So, this is a scalar equation all the 

quantities are scalar. In such a case, what we saw was displacement as a function of time 

would be , which is a magnitude of external forcing divided by  into 

. And, we also saw that velocity will be  which will be equal to 

. 

And, clearly you notice that between the forcing and displacement one is a  and 

other is . So, even if  were 0 there is going to be a  phase difference, but 

between forcing and velocity if  is 0 both would be in phase, otherwise there would be 

phase difference of  between velocity and forcing. And, with this summary we will go 

and see some more properties of the forced oscillator in the subsequent modules. 

Thank you.
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