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Welcome to the first module of this course on Waves and Oscillations, oscillatory phenomena 

is something that we keep meeting often in a real life we have seen things like for instance, 

pendulum in the clocks we have seen swings in the gardens that children play and I have a 

pendulum here and we keep meeting oscillatory phenomena again and again in various forms 

in real life. 

So, this course is going to deal with oscillations of a single particles and if many of them act 

together and start oscillating together, they generate waves and, in this course, we will meet 

waves as well.  

So, let us begin with what we mean by oscillation ok. So, I have a single particle very much 

like this bob of a pendulum that I have here and if I let it oscillate, it oscillates around some 

mean position to and fro. 
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So, that is an oscillation for us an oscillation that does not really go off to infinity or go off 

really far from where I am. For example, if I throw a stone from here it goes off very far from 

where I am and it is not going to return back to the original position that is not an oscillatory 

phenomenon. 

So, we are looking at phenomena which are going to explore the same space again and again 

something like this so that will be the oscillations of a single particle. On the other hand, you 

can actually connect several of these particles together like they begin to interact with one 

another and you can make them oscillate. For instance, many of us would have tried doing 

things like tying a string between may be two walls and pluck it a little bit. 
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So, that is like closely packed particles together and when you pluck it you are basically 

oscillating one particle, but very soon it conveys the disturbance to the ones that are close to 

it and soon you see waves that are propagating in both the directions through the string so 

that is a phenomenon of waves. So, when you have many particles which are coupled 

together, they begin to interact with one another and wave forms are one of the emergent 

phenomena.  
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So, the remit of this course is to deal with both oscillations of single particles and waves which 

are essentially oscillations of many particles coupled together. Now, physics is an 

experimental subject in a sense that everything that we would like to learn is basically 

governed by what a real physical phenomenon does. So, we take our inspiration from real 

physical phenomena and decide how what are the important questions that we can ask of 

them and may be hopefully write a mathematical model for that and see if a model works 

correctly and make predictions about it. 
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So, let us say that I have this system of string tied to a bob and this if I let it do this it begins 

to oscillate. So, when you see a phenomenon like this, the first thing to worry about is what 

are the interesting questions that we want to ask of this system ok. So, at first sight it appears 

that may be there is a time period to it in the sense that there is a fixed time when the particles 

begin from here goes there and comes back ok and hopefully it does not change. 

So, maybe I would like to know what is the time period ok this quantity 'and, but that’s not 

enough that’s like a top-level question, as soon as I see I can realise that I need to know and 

understand about the time period, but there are more detailed information that I would like 

to get from here for instance, the position of the bob as a function of time. So, at a given 
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instant of time where is this bob located and how fast is it moving the velocity and 

acceleration ok. 

So, all these quantities as a function of time. So, this is fairly detailed amount of information 

amount of information maybe I would like to get about this ok and may be other question 

that I would like to know is about the energy ok. So, when I when I did this, I am putting it I 

am giving it some energy and I would like to know how much of the energy does this bob 

spend when it actually completes one full oscillation ok. 

So, of course, there could be many more question at least these three important questions, 

we would like to learn and another thing which we will not probably see in the first week itself 

is the fact that when you start an oscillation and keep watching it after sometime, it is going 

to die down and it will basically come back to the starting point here like this and that is simply 

because of the dissipation. So, such damped oscillators are the subject of few lectures away 

and we will take it up in a later module. 
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So, let us get back to our pendulum here and let’s see, what are the inferences that we can 

make about this system ok. So, when nothing is done to this system, the position of the bob 
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is what we can call the equilibrium position. So, at this position the bob here does not 

experience any net force which is why it does not move at all from there.  

And it is very useful because if you want to measure any displacement like this, you could do 

it with respect to this equilibrium position you can actually put a scale here like this and 

measure coincide the zero of your scale with the equilibrium position. So, that any 

displacement would either be positive or negative on both sides ok something like this could 

have been negative and that could be a positive displacement and zero is where your 

equilibrium position is located. 

So, in this position nothing will ever happen, the bob will stay as it is ok. Now, if I want it to 

oscillate, I just need to give it a little bit of displacement here and leave it and it begins to 

oscillate. So, that tells us that in the process of doing this, I have given energy to this bob ok. 

So, my way of giving energy to this system is simply to pull it aside a little bit and leave it. So, 

consistent with the amount of energy that I have given, the bob will start oscillating.  

So, if I can give more energy by pulling it a little bit far out from its equilibrium position in 

which case it will also oscillate it will also show bigger displacement ok. So, that is second 

inference that we see ok and most crucial for what we are going to talk now is the fact that 

until I make the small displacement and give it some energy it doesn’t really try to come back 

to where it started from.  

So, equilibrium position is where it is comfortable sitting when nothing else happens and if I 

move it either of these sides this side or this side, it tries to goes back it it tries to go back to 

the equilibrium position so; that means, that there is something that we can call as the 

restoring force a force that tends to restore the bob back to the equilibrium position ok. So, 

that comes into play only when I displace it ok. 
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So, restoring force basically comes into play when there is slight displacement away from the 

equilibrium position and we should also note another crucial thing if my displacement is in 

this direction, the restoring force is in the other direction. So, the displacement and the 

restoring force are oppositely directed ok.  

Now, we can make the first of our physical ansatz having been inspired by this physical 

phenomenon, that the restoring force is proportional to some function of displacement and 

the negative sign that you see here indicates that the restoring force and the displacement 

are oppositely directed. Ok given this we do not know what form of function this 𝑓(𝑥) is ok, 

but we know that when there is no displacement 𝑓(𝑥) will have to be zero because the 

restoring force is zero when there is no displacement. 

So, the simplest assumption that’s consistent with all these constraints is that 𝑓(𝑥) is linear 

in 𝑥. So, in other words you could make reasonable assumption that for small displacements 

at least the restoring force is proportional to the amount of displacement that you have given 

ok. So, which means that 𝑓(𝑥) is equal to 𝑥 ok. So, you can plug that in here and then we can 

write an expression for this restoring force. 

(Refer Slide Time: 10:14)  
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So, the restoring force is now equal to −𝑆 times 𝑥. So, this 𝑆 is a constant that I have now 

introduced to get rid of this proportionality sign here and 𝑆 is what is called as the stiffness 

constant. So, before we say anything about stiffness constant let us look at the dimensions of 

this stiffness constant. So, 𝑆 is simply fr divided by x. So, it should have the dimensions of force 

divided by the displacement and force is mass into acceleration. So, I have 𝑀𝐿𝑇−2divided by 

𝐿. So, the dimensions of stiffness constant or 𝑆 is simply 𝑀𝑇−2  ok. 

So, as the name suggest stiffness constant is somehow a measure of how stiff the system is. 

So, it is a measure of force that you need to put in to get a unit displacement. So, that is what 

this force by displacement tells us. So, the more the force that you need to put into get unit 

displacement tells you that somehow the system is very stiff you need to really put in lot more 

force to get even a let say a centimetre of displacement. 

Now, we will use all these to write out our simple model ok. So, the restoring force is what 

gives you the mass times acceleration. So, I can rewrite the equation as mass times the 

acceleration and that’s equal to minus −𝑆 times displacement ok. Now, this can be easily 

transformed and written in this standard form. 

𝑑2𝑥

𝑑𝑡2
 +

𝑆

𝑀
𝑥 = 0 
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So, 𝑑2𝑥 𝑑𝑡2⁄  which is the acceleration plus 𝑆/𝑀 multiplied by displacement is equal to zero. 

So, what I have is a second order ordinary differential equation that describes oscillations. So, 

you will notice an important point here, we were inspired by the oscillations of this bob to 

write this (Refer Time: 12:38) that restoring force is proportional to displacement and there 

was negative sign and from that we have obtained this, this is basically an equation of motion 

that describes the motion of this bob ok. 

But if you look at this equation here, it doesn’t really relate anything to the pendulum. So, in 

fact, nothing of the pendulum let say for instance length of this piece of string does not even 

enter this equation here. So, it is not clear that this describes this pendulum that I have here, 

but on the other hand this equation describes all the oscillatory phenomena until you stick to 

the important piece of initial assumption that we made that the restoring force is proportional 

to displacement with the negative sign. 

So, before we go ahead and test it with the with this pendulum let us rewrite this equation in 

a slightly different form and something that is useful for us is the dimensions of this quantity 

𝑆/𝑀and 𝑆 we already saw as the dimensions of, So, we saw that 𝑆 has dimensions of 𝑀𝑇−2  

divided by 𝑀 which means it is 𝑇−2. So, the quantity 𝑆/𝑀 has dimensions of 1 𝑡2⁄  ok. 

So, somewhere this quantity 𝑆/𝑀 is related to the time scale in the system. So, we will see 

what that time scale is and to make it  easier  lets rewrite this equation as 

𝑑2𝑥

𝑑𝑡2
 + 𝜔2𝑥 = 0 

 where I identify this quantity 𝜔2 to be  𝑆/𝑀 

Motivated by what we saw with the pendulum, we made this ansatz that restoring force is 

proportional to displacement with the crucial negative sign there and then with few simple 

steps we arrived at this equation here  ok  this one  and . So, it is important to remember that  

this is possibly valid for  small oscillations and this  quantity 𝜔2 that we have written down 

here is related to inverse of  something that as  information about the time scale in the system 

, this quantity 𝑇  here is simply related is the time period of the system ok and in fact, in this  

problem like say this pendulum there was only one time scale in the system which is simply 

the time period or the time taken for the bob to go from one end to other end and back to 

the starting point ok. 
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So, this capital 𝑇 time period is that time taken for one complete circuit or one complete 

oscillation. So, now, we have the mathematical equation that describes small oscillations. 

Now, the crucial question to worry about is, is this correct? How do we know that what we 

have derived based on looking at the pendulum and our own intuition and we put together 

this simple equation, is this correct? 

So, the way to answer this is by actually doing an experiment let us predict something based 

on this mathematical equation and then check with the experiment whether it matches or 

not. So, which is what we are going to do right now and let us check that with the system that 

we have here namely the pendulum, but again we should remember that the equation that I 

have written down here does not refer to pendulum at all, it is in general valid for all 

oscillatory systems provided you are in the regime of small oscillation. 

So, at this point that is the claim that we have and now we are going to check this with 

pendulum. 

So, when we go to pendulum now, we need to derive specifically an equation of motion for 

pendulum. So, I have drawn here a sketch of pendulum. So, I have a string of length 𝐿 and 

there is a bob whose mass is 𝑀 and if I pull it a little bit aside the displacement or the angular 

displacement is  𝜃 and the distance here is 𝑥. 
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So, 𝑥 and 𝜃 are related by 𝑥 is equal to  𝐿 times 𝜃 . Now, what are the various forces acting 

on this bob when you displaces it away from the equilibrium position when it is here. So, there 

is of course, the weight which is acting vertically downward that is mass times the acceleration 

due to gravity 𝑀𝑔and then this 𝑀𝑔 can be resolved into two components, one that is along 

the direction of the restoring force and the other one which is perpendicular. 

So, in the perpendicular direction it will be 𝑀𝑔𝑐𝑜𝑠𝜃. So, I will leave it you to figure out how it 

comes it is simple resolution of the vector and along the direction of the restoring force that 

is along this distance 𝑥  it is 𝑀𝑔𝑠𝑖𝑛𝜃. So, now, we are ready to write equation of motion that 

will precisely describe the motion of this bob.  

𝑀𝑥̈  =  −𝑀𝑔𝑠𝑖𝑛𝜃 

So, 𝑀𝑥̈  is equal to the restoring force which is - 𝑀𝑔𝑠𝑖𝑛𝜃 and here 𝑥̈ can be replaced in terms 

of 𝐿 and 𝜃. So, that could be written as  

𝑀𝐿𝜃̈  =  −𝑀𝑔𝑠𝑖𝑛𝜃 

and maybe I should have mentioned that this double dot indicates second derivative. 
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So, 𝑥̈ would mean 𝑑2𝑥 𝑑𝑡2⁄ . So, this is a convention that we will use throughout this course 

ok. So, here now back to this equation this  𝑀 and 𝑀 will cancel. So, I can rewrite this equation 

as  

𝜃̈  =  −
𝑔

𝑙
𝑠𝑖𝑛𝜃 

 So, if you go back to our equation for small oscillation that we wrote down it looks like 

𝑑2𝑥

𝑑𝑡2
 + 𝜔2𝑥 = 0 

but the equation that we have does not quite look like that, but we can bring it to this form 

provided we make the assumption that the angular displacement has to be small. 

In the so, when I say angular displacement has to be small, I mean that  𝜃 should be much less 

than 1  in which case  I can replace 𝑠𝑖𝑛𝜃 by  just 𝜃  I could then write it as   

𝜃̈  +  
𝑔

𝑙
𝜃 =  0 

 

 

Now, if you remember this equation that we have just written down is similar to the equation 

that I have here. 

So, hopefully this should describe for us the dynamics of this pendulum, but we can go ahead 

and associate this 𝑔/𝐿 with  𝜔2  and since we said 𝜔 =  2𝜋/𝑇 if you put in 𝜔 =  2𝜋/𝑇 and 

simplify you can get an expression for 𝑇 which is a time period of the pendulum as 2𝜋√𝑙/𝑔   

So, this is the result that we will we will test it out in an experiment. 

(Refer Slide Time: 21:25) 
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Similarly, we can also consider one more oscillatory system. So, in this case what I have is a 

spring and mass which is hanging from a support like this and if I do not do anything to this 

system roughly this is where the mass would stand as it as shown in this figure and as usual, 

we will identify that position of that mass 𝑀 as the equilibrium position.  

So, that is where the net force on the on the block is zero ok and if I displace it a little bit here 

in this direction by an amount x. So, the spring is, has expanded and when this happens there 

is going to be a restoring force which will take the block back to its equilibrium position so it 

will start oscillating. 

So, here again we can go back and write an equation. So, once again it is mass times 𝑑2𝑥 𝑑𝑡2⁄  

which I write as 𝑥̈ and that’s equal to, it is actually proportional to displacement with the 

minus sign and the constant here is 𝑘  and this 𝑘 is the spring constant and here in this case 

it is very easy to bring it to the standard form.  

So, 

𝑥̈ +
𝑘

𝑀
 𝑥 =  0 

So, you can see that I can directly write of the value of  𝜔2which is 𝑘/𝑀 and I can write an 

expression for the time period. So, that is  
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(2𝜋)2

𝑇2
=

𝑘

𝑀
 

And 

𝑇 2 =  4𝜋2
𝑀

𝑘
 

So, this will give me an expression for time period which is  

𝑇 =  2𝜋√
𝑀

𝑘
 

 

So, once again we have an expression for the time period, this time for system of a spring in 

which block of mass 𝑀 is hanging and it is executing simple harmonic motions.  

To summarize this module based on the pendulum example that we started with, we made 

the ansatz that the restoring force is proportional to displacement with the negative sign. 

That simply is the central physics that we need to learn and from that we obtain an equation 

of motion which is shown here  

𝑑2𝑥

𝑑𝑡2
 + 𝜔2𝑥 = 0 

ok and of course, for detailed information we will have to solve this equation of motion which 

we shall do in the next module. 

But even without solving it, we could still test the validity of this equation by simply extracting 

the information about the time period and matching it the time period that we get from this 

theory with what we get from experiment. 
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So, before we compare with the experiment, let us see what we should expect theoretically. 

So, based on the equation that we just derived the time period depends only the length of 

the pendulum and the acceleration due to gravity. 

So, in the setup that we have length of the pendulum is 0.25 meters and acceleration due to 

gravity is 9.8 meters per second square. So, if you put in all those numbers, it tells us that the 

time period expected based on a theory is about 1 second, now let us do the experiment. 
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So, we will run the bob and oscillate it ten times and then compute the time period. So, when 

tenth oscillation completes, we saw that it has taken 10.22 seconds. The time taken for ten 

oscillations is 10.22 seconds as we just now measured. So, the time period is 10.22 seconds 

divided by 10 that is about 1.02 second. 

So, we can see that there is a very good agreement between what we theoretically expected 

which was about 1second and what was experimentally measured which is 1.02 seconds. So, 

to within the experimental errors there is sufficiently good enough reason to believe that the 

assumptions that we made about small oscillations and the equation that we obtain for 

describing the motion of this pendulum are correct.   
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