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Now, what happens if I have a two-dimensional function?

(Refer Slide Time: 00:24)

For example, now I am moving on to 2D. So, suppose I have a function z which I am

calling as a function of two variables x and y and I want to compute this integral. So, x

equals to a to b and then y is equal to c to d, z dx dy. So, one can use the same thing. So,

what I do is that interval between a to b that I split into m sub intervals, each with each

having a width h say. So, what that means, is h is equal to b minus a by m.

Similarly, the interval c to d that I split into n sub intervals, this will be n, where each

width is given width of the width of each one is given by d minus c by n. And since we

are discretizing it the value of the ith point xi that will be given by x0 plus i h where my i

goes from 0, 1 to all the way to n. In this case the yj will be given by y0 plus j k, where

my j goes again from 0, 1 all the way to m, n.
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And then if we do a similar exercise that we had done in this case, I am not going into

the  derivation,  I  will  just  directly  write  down  the  equation.  So,  my  integral  two-

dimensional integral under the trapezoidal rule will be given by this function. 

So, schematically what we can think of is suppose this is my x and y axis. So, I have my

point  a  here,  b  here,  somewhere  here I  have  c  and I  have  d here.  So,  basically  the

coordinate of this point is a c, the coordinate of this point is b c, the coordinate of this

point  is  a  d  and the  coordinate  of  this  point  one  can  write  as  b  d.  And so,  I  have

trapezium in the base in the x y plane and I want to compute now the volume of this

trapezium, ok. So, z is perpendicular to this plane.

So, if you remember the previous case. So, here you get you need to compute the value

of the function at f(a) and at f(b) the two points of the integral. In a similar way here also

you need to compute the value of the integral at all these points. So, that I write as one-

fourth h k, where h and k are these two quantities here and then what we will get as

function, the value of the function at the coordinate (a ,c) plus value of the function at the

coordinate  (b,c)  plus  value  of  the  function  at  the  coordinate  (a,d)  plus  value  of  the

function at the coordinate (b,d). So, this is one term I will get.

So, apart from that I will get another term which is for example, along the edges of this

trapezium. So, that will be given by, so plus 2 sum over i equals to 1 to m minus 1 f x i at

c, so basically I am looking  along this line plus 2 sum over i equals to 1 to m minus 1 f



of xi . So, basically along this line, function at along this line plus i get 2 sum over j

equals to 1 to m,.... sorry this will not be m..., this will be n here, (jn-1) with f a x j plus 2

into sum over j equals to 1 to n minus 2 f(b) * xj. So, this goes along this 4 sides of the

trapezium. And then we also need to evaluate the points the value of the functions at the

points which lies in within this trapezium. So, for that we will get double sum, sum is j

equals to 1 to n minus 1, then sum over i equals to 1 to m minus 1 f (xi ,y i). So, this is

my expression for the integral. 

So, in this case also the error typically scales as of the order of h square plus of the order

of k square or in other words you can think of the order of n to the power minus 2 plus of

the order of n to the power minus 2. So, this is the how the error is scalable.
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So, if we think of again doing the same integral. So, for a general k dimension, what will

be the error? So, we will look into that now. Or in other words how the error  in these

type of methods typically scales as one increases the dimension or is the function of the

dimension size.

So, now, suppose I have N number of points, these are the total number of points in my

N dimensional grid and along each dimension I have n, small  n points. So, the total

number of points N, capital N is equal to n to the power k. And as I mentioned before

that the error scales as is of the order of n to the power minus 2. In the same way as we

have done for the 2D case, if we plugin this equation here the value of, if we write the



small n in terms of the capital N what we will get is that my order scales as n. So, this

equation gives me small n is equal to n to the power 1 by k, I can write. So, in other

words what I we get is 1 by k to the power minus 2.

So, what it tells us is that the error scales of the order of minus 2 by k. So, what does this

mean? So, what it means is that as we increase the dimension, as we go to higher and

higher dimension the error in the grid based method goes to increases or in other words

the quality of my integral goes down. 

Now, the second thing is what about the computational cost. So, for the 1D case your

computational cost scales as of the order of n because you are evaluating the functions at

n different points. The moment as we saw in the last slide that when we go to the 2D

case we have to evaluate the function on an m into n grid. So, what it implies is that, it

scales as order n square. Similarly, for a 3D case the computational cost will scale as

order n cube. 

So, for a k dimensional case the computational cost is scales as n to the power k. So,

basically as we increase dimension the computational cost increases which is a bad thing

and we do not want that. So, to get a feel of how much the computational cost increase

what we will do is I will take a very common example. So, particularly, so I will take a

case where these evaluating this multidimensional integrals are very necessary.
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So, for example, so what we are trying to do is now to get a feel of computational cost.

So, those of you who have a background in quantum mechanics you know that we are

often  interested  in  computing  the  expectation  value  of  my Hamiltonian  because  that

gives me the energy of my system. So, how does we write the expectation value of my

Hamiltonian? So, we can write E equals to the integral dR 1 dot dot dot dR N H which is

a function of R 1 dot dot dot R N, psi star which is my wave function R 1 to R N, then H

which is a function of R 1 to R N and then psi goes as R 1 to R N. And then here it goes

to dR 1 to dR N and then we have the normalization below, ok.

So, suppose we have we have a system where we have 10 particles, ok. So, if and we

want to evaluate the integral for this. So, the number of the dimension of this integral, so

R  here is the position vector, ok. So, each vector has 3 directions. The dimension of this

integral will be 3 into 10 equals to 30. Now, suppose along each direction I use 10 grid

points along each directions. This is the smallest one can think of. So, what that will

result is that, so the number of mesh points, number of grid points, the total number of

grid points I would say will then be 10 to the power 30, ok. So, this we have to evaluate

the function at these many grid points to compute the integral.

Now, the let us suppose we have a 100 teraflop computer, ok. What this means is that

this computer can perform 10 to the power 14 floating point operations per second, ok.

So, now we compute the time that will take and also we assume that to evaluate the

function at each grid point we need to do one floating point operation,  then the time

taken to compute at 10 to the power 30 grid points will be of the order of 10 to the power

16 seconds, ok. So, this will be the my computational cost, if I want to do compute this

integral for a system of 10 particles using a relatively coarse grid where each along each

direction I am using a 10 using just 10 grid points.

Now, how large is 10 to the power 16 seconds? To give that perspective let me just code

the age of our universe. So, hat is typically of the order of 4.7 into 10 to the power 17

second. So, now, look at this two numbers here, ok. So, these numbers are very much

comparable. So, what this numbers tells us that in terms of the computational cost if we

use this grid based method to evaluate an integral which is something like this or in other

words evaluate a n-dimensional integral then we will never be able to use it. I mean find

out the solution for that in our lifetime.



So, now the question is what to do but before we go to what to do. So, let me just tell you

one thing. So, trapezoidal rule is one of the simplest rules. So, there are some other rules

also for example, the Simpsons one-third rule, then there is the Gaussian quadrature rule

and all. So, those are much more sophisticated and computationally efficient, but having

said that  those methods are  still  not good enough or computationally  fast  enough or

accurate enough to evaluate these type of multidimensional integrals. 

Now, all this methods which we have seen so far these are called grid based method,

deterministic methods because we are evaluating the function at a predetermined set of

grid points. So, we know that we are going to evaluate the functions at this value of my

grid. So, in that way it is a deterministic method, ok.

So, now, we come to the next question as to how do we get rid of this problem. So, we

have two problems here. We have a method here which is computationally expensive

and in a realistic way it is computationally unfeasible to use it and which has a error

which increases as we go to higher and higher dimensions. So, how do we solve this

problem and now one line  answer  to  this  is  we move to  the  stochastic  methods  of

integral.
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So, what we will do is we will look into how to do the numerical integration using the

trapezoidal  method  for  that  what  we  will  try  to  do  is  we  will  try  to  evaluate  this



following integral. So, basically the limits are from 0 to 1, 4 by 1 plus x square dx and

we know that the value of this integral is pi.
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So, what I have here is the code. So, this is the directory where all the codes are if I do ‘l

s’ you can see all the different codes here and the code which does this is this trapezoidal

vi underscore trapezoidal dot f 90. So, I am opening it in a vi editor and this is how the

code looks like.
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So,  as  I  mentioned  in  the  lectures  of  the  first  module  that  whenever  one  writes  a

FORTRAN program. So, it starts with this program keyword and then the name of the

program, and then I have put in comment a line which says that I will be doing this

integral using the trapezoidal rule.

So, what do I need to do? So, I need to have some variables, some of them are integers,

and some of them are real numbers. So, amongst the integers I am using two integer

variables here n and i. So, n is the total number of grid points that I will be using for my

to evaluate the integral along the x axis and i is the counter.  Then I have some real

variables, ok. One thing I have not mentioned is this real star 8. So, far what we have

been doing is we are just using real. So, star 8 basically what it tells the program or tells

the compiler is that I want to do this calculations in double precision.

So, here I have a set of variables which are already defined below in the comments. For

example,  my a is the lower limit  of the integral,  then the b is the upper limit  of the

integral, h will be the bin size. By bin size what I mean is, so there is limit on the integral

from 0 to 1 as you see here. So, from 0 to 1, this I will be dividing into n bins. So, h

stores the value of the size of each bin. This variable ‘func’, this is a function and this

function I am using to evaluate this particular function 4 by 1 plus x square.
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So, this you can see I have the function here at the end of the program. So, what it does is

the program sends to this function the main program send to this function, the argument



x which  is  the  value  of  x  at  which  this  function  needs  to  be  evaluated  and  then  it

evaluates  this  functions  and  return  it  back  to  the  main  program.  So,  that  is  what

information that is stored in this ‘func’ variable. 

Then I have some other temporary variables. Then f(a) is the value of the function at a

and f(b) is the value of the function at b. And then what I do is I store the value of the

integral in trap underscore sum. So, this goes the declaration of variables, now we begin

the program.

So, to start the program what I, the program needs to know from the user is how many

points do I want my interval to be divided into. So, that is why I write using this write

statement, I give a I prompt on the screen that gives the value of n and when the user

sends in the value of n. This is reading in this statement. So, once I know the number of

bins I also need to know what are the limits of my integral. 

So, again as before I give using the write statement I prompt on the screen that gives the

lower limit of the integral, then I read that value that uses separate value. Then, I again

ask for the code again asks for the upper limit if the integral and then it reads in the user

supplied value which is stored in this variable b.

So, now once I know my n and I know my a and b what I am doing here this part of the

code what it does is it evaluates the size of each bin. So, that is h the variable I used to

store that is h. So, the size of each bin is given by the difference between the upper and

the lower limit divided by the number of bins that is b minus a divided by n. So, you note

that in the beginning of the code I have put n as an integer and now I am doing a division

here which is  not an integer  type of division.  So, what  I  am changing it  into a real

number because b minus a is also real. So, I would like to have everything real number

here. So, that is why I am using this FORTRAN attribute real which changes this integer

variable n to a real one.
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So, once I have the bin size what I also need to do know is what are the values of the

function at the two limits of the integral that is at f(a), where x equals to 0 and f(b) that is

the upper limit in this case it happens to be 1.

So, now once I know these things then what else do I need to know. I need to know what

are the values of my functions at the different; at the different grid points that lie between

0 and 1. So, and then once I know this functions, so what I need to do is I add them up.

So, how do I do that? What I do is I use a do loop. So, my do loop goes from i equals to

1 to n minus 1. The reason it goes to n minus 1 is because the nth point is my end point

which is the b and for that I already have the function. So, this do loop goes from 1 to n

minus 1 and at each iteration of this do loop the first thing is done is we evaluate the

value of x. So, we start at the lower limit then to that we add the width of the bin size

into i which is the increment of the step size. 

So,  and once we know the value of x what  we do is  we call  this  function  and this

functions returns me or returns the code or the main program the value of the function at

the point x. And this is then added up. So, this is done in this line here. So, each time this

do loop is executed the function is evaluated and is added to the previous value. So, that

is why one should always be careful that before I start this do loop I should set this to a

value 0, otherwise FORTRAN might take some arbitrary initial value in this variable trap

underscore sum which might give me erroneous results.



So, once I have now summed up the values of the functions at the different grid points,

so what I do is now I evaluate the value of the integral which is given by sum of  all the

grid points plus f(a) and f(b) into the height of my trapezoidal which is h.
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So, once that is done what I do is I write on the screen the value of the integral equals to

trap underscore sum. So, this is the code and it is a very simple few lines of code, more

precisely it is just 49 lines of code and let us see what we get after we run it.
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So, to run it, as I told you first we need to compile the code.
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So, how do I compile the code? Here I am using gfortran compiler. So, gfortran minus o

trapezoidal dot x, that is executable file that needs to be created and then I have I give the

FORTRAN program name. So, once it is compiled I do a ls minus ltr and then I see that

a new file has been created which is the trapezoidal dot x which contains my executable

file.
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So, now I will run it and we will see what the code gives. So, this is my trapezoidal. So, I

give first a very small value of n. And then it asks for the lower limit of the integral



which is 0 in my case and then the upper limit which is 1, and then I get the value of the

integral in the following way. So, this is my evaluated value of the integral which is very

close to the value of the pi which is 3.14 something. So, you see if we now increase the

number of grid points say from 10 I make it to 1000 and redo the calculation what I will

see is this value is slowly going closer and closer to the actual value. So, the same thing I

have automated it and this is written in this code trapezoidal auto dot f 90.
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So, what it is basically the same code. What I have done is this thing is evaluated, I

increase the value of n by a factor of 5, so n becomes n into 5.
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And then this loop is executed till n is larger than this particular number. So, this is the

only change. So, that I do not need to give in the value of n every time and also what I

am doing is I am printing the bin size h, then the value of the integral and then the error.

And the error I am calculating as the actual value of pi minus the computed value of the

integral.
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And all this thing I am storing in a file which contains this name trap underscore pi dot

that using this ‘open’ attribute, ‘open’ keyword of the of fortran. So, again what I need to



do is I need to compile it. So, it is the same way minus o trap underscore auto dot dot x,

then trap underscore auto dot f 90. So, after compile, getting compiled we have this new

executable which is being produced here which is trap underscore auto dot x.
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And what I do is now I run it trap underscore auto dot x. So, I give a starting value of n

10, then the lower.... sorry I made a mistake in giving the lower limit..., so I will run it

again. So, I give a value of 10 and the lower limit is 0, the upper limit is 1 and then it will

take some time because it is doing for now several values of the integral and it is done.
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Then if I do ls minus ltr which basically lists gives a list of the file as per the timestamp.

So, I see that a new file has been created.
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So, so if I grip out the contents of this file. So, this is what I have. So, this, so my first

column is if you remember its h, the second column is the value of the integral and the

third column is my error. So, as you see if we go smaller and smaller value of h the error

is decreasing. So, this is how trapezoidal rule is used to compute the value of the integral

of this function. 


