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Molecular Dynamics: Calculation of Thermodynamics Quantities

Welcome back to the class. So, in the last class you learned about neighbor lists, which

would help you increase the speed of molecular dynamics simulations significantly a

factor of 10 or 15. And that would enable you to run your molecular dynamics code for

large number of iterations, which means for long times.

So, which means that you can follow the trajectory of n particles where n could be 1000

or 10000 over an extremely long period of time. And why do you want to follow it over a

large period of time, so that you can calculate average statistical quantities from it, right.

So, you could also run the code without your neighbor list and then well you can do up

till 1000 particles at the most and even that takes quite some amount of time if you run it

long.

But,  if  you  have  above  1000  particles  running  a  molecular  dynamics  code  without

neighbor list is practically impossibility; I mean the code becomes extremely slow and

you will waste a lot of time waiting for the code to give you results, right . Now, suppose

we have the trajectory, then what? Then we could calculate statistical quantities as I have

been telling you.



(Refer Slide Time: 01:42)

In  today's  class  we shall  discuss  the  discussion  of  how to  calculate  three  statistical

quantities just as an example.  In that you will calculate  the pair  correlation function,

which essentially gives you information about the microscopic structure of the particles,

right. And basically the Fourier transform of the pair correlation function is the structure

factor.

So, when you do a scattering experiment to find out the structure of a solid or maybe of a

liquid; structure of a solid most probably has been taught in class and you get the so

called (Refer Time: 02:23); but here we have been studying liquids, dense liquids or

gases. And if you basically measure, as I am using a similar scattering experiment, the

structure of the fluid, so structure factor, by measuring the structure factor and then you

can take the Fourier transform of it and calculate the g of r. 

On the other hand, you can also essentially put in a computer code, have a guess for the

potential  and calculate  the g of r,  given the match the densities as with that of your

experiments and check whether they are matching or not. If they match, you would say

that you have at least in terms of structure a reasonable or a good model of for your fluid

at the right temperature and so on and so forth.

The other thing which we shall calculate is the Max well Boltzmann speed distribution,

right.  So,  in  a  statistical  mechanics  course  you  must  have  already  learnt  about  the



Maxwell Boltzmann speed distribution and what it gives is essentially the probability

that a certain number of particles are moving with speed v and v plus d v, right.

So, here this is the standard expression for P, where P is the probability density actually

alright.  And,  so  basically  probability  density  has  this  expression,  if  you  have  any

confusion just look up your stat mech book, this is nothing but a pre factor into e to the

power minus e; e being energy and here you have kinetic energy by to K B T, right half

m v square by 2 is kinetic energy and as the energy of the particles by K B T, it is the

Boltzmann factor essentially.

So, we shall be discussing how to calculate that quantity and P v d v right, P v is the

probability density and P v d v, d v being the speed interval; is basically the number of

particles moving with velocity v and v plus d v by N, the total number of particles and

that  is  the  quantity  which  gives  the  probability  of  finding  d  N particles  with  speed

between v and d v.

So, P v is probability density and P v d v is the probability. And the last thing which we

will calculate or I will tell you how to calculate is the so called diffusion constant and

Maxwell Boltzmann speed distribution. These two both are dynamical quantities, means

it is it basically is a measure of how the particles are moving with time, right.

So, you; so diffusion constant basically gives a measure of how much a particle  has

diffused or moved or got displaced. So, delta r square is a measure of the displacement of

a particle, of course you have an expectation value here, you need that expectation value;

because you are averaging over many particles right.  You it  is an n symbol average

quantity,  because  if  a  particle  is  diffusing  is  doing  a  Brownian  motion,  you cannot

predict how much that particle will move in the time interval t 2 minus t 1 in a certain

time interval say, which I have denoted by t 2 minus t 1.

But if you average over many particles, then you can have an expectation value; what is

the average expectation value? So, this  is a measure of how much you can expect a

particle to get displaced due to diffusion Brownian motion in time t 2 minus t 1. Here we

are calculating P v d v Maxwell Boltzmann distribution, it is basically the number of

particles moving with velocity v plus d v, right.



So, it is impossible for you to calculate P v d v, Maxwell Boltzmann speed distribution,

if  you  did  Monte  Carlo  simulations;  a  Monte  Carlo  off  lattice  simulations  of  this

particles, which is also possible, right. From there you can calculate the pair correlation

function from if you simulate n particles. If you simulate the equilibrium distribution or

the  positional  distribution  of  particles  in  a  Monte  Carlo  off  lattice;  Monte  Carlo

simulations with the same number of particles, you can get this quantity, pair correlation

function you can get.

But you cannot possibly get Maxwell Boltzmann speed distribution, because you do not

have speed in Monte Carlo simulations. Please refer to your first lecture where I gave a

15 minute  10 minute brief  about  how to do off  lattice  Monte Carlo simulation  with

particles I mean basically the same kind of things.

So, what molecular dynamics gives, as I said even in the first lecture you have these

dynamical quantities. So, instead of calculating just structural quantities which you can

also do in a Monte Carlo simulation, I have intentionally chosen two quantities which

you can calculate when using only molecular dynamics. Having said that I will just add a

small  k v 8, people do calculate diffusion constant and dynamics because it  is about

matter of displacement even in Monte Carlo simulations; where t 2 minus t 1 is replaced

by the number of Monte Carlo iterations.

 So, that is also done, it is not unknown; but then you cannot really ascribe any time to

the number of Monte Carlo iterations, but that is a topic for some other day and some

other class.

So, if you want to do dynamics typically you choose molecular dynamics.
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Having said that me give you details  of what is a pair correlation function.  The pair

correlation function is typically denoted by g of r, as I have written here, r minus r dash,

where r is the position of one particle and r dash is the position of another particle and it

is also referred to the density-density correlation function.

So, the density at point r, right and the density at point r dash and you are taking an

average expectation value over it and normalizing by the average density square. Now,

so in statistical physics books you might more often find discussion about the density-

density correlation function that is what you typically calculate when you can calculate

density as a function of space.

So, I should not write equal to I should be writing equivalent to, where as in particle

based simulations you typically calculate g of r which again tells you that if suppose

there is a particle at point suppose r, then what is the probability, what is the, how are the

other particles in it is neighborhood distributed. So, basically with respect to this one

particle, you are trying to find out the probability of finding other particles at a certain

distance r.

So, what you calculate in the pair correlation function is essentially how the particles are

distributed  about  one  particular  particle.  Of  course  you have  to  take  an  average;  to

calculate  the pair  correlation function you have to take an average over all  particles.

Because  then  it  will  say,  I  mean  that,  pair  correlation  function  will  give  you  the



information that around any one particle and all particles you assume to be statistically

similar;  around any one particle  what  is  the  distribution  of  its  neighbors  around the

particle.

Now just for an example just, suppose you are looking at this particular red particle here

and basically what you do to calculate the pair correlation function is, draw concentric

circles which are marked in green here around this red particle, right. And you figure out

within each of these concentric circles, how many of it is neighbors are there.

Now, this concentrate circles are of width d r, right and they will be at distances r 1, r 2

and r 3 and r 4 and r 5 further and further away from the center of your particle, of the

particle in choice. And then you basically calculate within each shell, that is at distance

of r 1 and r 1 plus d r, thus the basically the width of a shell and r 2 and r 2 plus d r and r

3 and r 3 plus d r, how many particles are there, ok.

And this is what you have to calculate and suppose you calculate this around particle

number  1,  suppose this  red particle  here is  particle  number  1 and you find out  that

particle number 2, 3, 4 and maybe 500 and 600, as the particles move around in space is

around  particle  number  1.  And  you  are  calculating  what  is  the  average  density  of

particles, how many particles are there at distance r 1, r 2, r 3 on an average.

When you are doing on an average, then as you do, you draw concentric circles around

particle 1; similarly you can draw concentric circles around say particle number 2, you

draw concentric circles and figure out how many particles are there at a distance of r 1, at

a distance of r 2; when I say r 2, I actually mean r 2 plus d r, when I say r 1, I mean r 1

plus d r.

So, how many particles are there within those concentric circles and then you repeat that

thing for particle number 3 and 4 and 5 and 6 and for n particles; where n could be

around 1000 or 5000 it depends upon the number of particles in your box. And then to

get an average, you can average over how many particles were there around 1 2 3 4 5 and

you can average over these, right; because for each particle you can calculate how many

particles where there at a distance of r 1 r 2 r 3.

So, then you basically calculate an average over all these particles right, then you get a

pair correlation function for a particular microstate. Now typically you will see that it



will be extremely noisy and so it would be noisy and you have to average over many

microstates; because what you are calculating is the statistical quantity right, how many

particles on an average are at a distance r, that is what you are trying to calculate.

So, you not only average over a number of particles, but you run the simulations, assume

that  it  has  reached  equilibrium,  it  would  have  reached  equilibrium  when  we  had  a

discussion about how to check for equilibrium; basically kinetic energy, potential energy

etcetera would fluctuate about in average, they would not evolve especially if you have a

thermostat, right.

And assuming it has reached equilibrium, you can calculate the pair correlation function

and it will give you an average number of particles that you find in a at a distance r on an

average from any particle, right. It is basically telling you the distribution of neighbors

around your any particles. So, how would it look, how should it look?

So, here I have drawn schematically; of course, you will calculate it computationally, but

here I have drawn it schematically, how it would look for a simple liquid. Simple liquid,

Lennard Jones would you would call a simple liquid; where basically the potential is

radially symmetric, because you could have also particles of a liquid which are rod like,

but we are talking about simple liquid. So, we are not going there.

So, for a simple liquid like Lennard Jones fluid at a suitable density is suppose around

0.2 or 0.3, what you would find; so, is if I plot g of r pair correlation function on the y

axis versus r, the distance between two particles on the x axis. Then basically for g of r

would be 0 at very small distances till about the distance till r becomes order of sigma.

And why is that, because basically two particles as in here, they cannot approach each

other  beyond  the  below  a  distance  where  the  distance  between  their  centers  is

approximately is equal to their diameter, right.

So, why cannot they approach, but because as you see as the center between the particles

becomes less than sigma; we have chosen sigma equal to 1, just to remind you. As the

distance between the centers becomes less than sigma, this is a sharp r to the power 12; 1

upon r to the power 12, strong repulsive force which will make the particles move away

from each other that is a repulsive force.



So, hence you see that nearly till up till sigma, the g of r is nearly equal to 0, which

means, two particles cannot approach each other below this distance 1, when sigma equal

to 1. Well, you can, so basically you do find, so the particles can approach distances of

say 0.98 or 0.99 sigma. It depends upon the value, how strongly the potential goes up

and also depends the value of 4 epsilon; the prefactor of the Lennard Jones potential.

But basically from around 0.98, the g of r starts to increase, which means that with rare

occasions  you do find  where the distance  between two particles,  where the distance

between the centers of two particles becomes around 0.98 or 0.97 or 0.99, but it is a

rarity. And then you find a peak just beyond r greater than sigma, here you find a peak,

right.

And the  reason you find  a  peak  is  that,  if  it  is  a  liquid,  then  each  particle  will  be

surrounded by many other particles. So, if this is the; this is your central sphere in your

particle of interest, just around it would be around 12 neighbors, if it is a dense liquid;

less if it is a less dense liquid. But you would find a large number of neighbors just

sitting around it, right.

So, what would be the schematic of a liquid? It would be something like this, surrounded

by identical particles, right. So, somewhere here, some are slightly further apart, some

are closer and this is the approximate schematic diagram of a liquid. So corresponding,

correspondingly just like around this particle right, you find these other particles, you

find  a  first  shell  of  particles  which  is  surrounding  the  particle  of  your  interest  and

corresponding to that you see a peak here, right.

And if you have a large number of particles just surrounding your any particular particle;

I mean this central particle would be actually any particle, because an average you are

calculating how many particles would you find at a distance r, where you have to take

the both the average over the number of particles and the time average, right. And if you

have a particle; if you have a large number of particles at say distance r 1 right, which is

basically a measure of your first neighbor shell, then just at a distance beyond r 1.

So, it is slightly larger; suppose r 1 plus sigma by 2, sigma by 2 is the radius, right. So, if

you are supposed finding a large number of particles at such a distance around the central

particle; then you are not going to find the center of particles at such a distance, right.



Because most of the particles are just simply very close and sticking, there is Lennard

Jones attraction, they are sticking to it.

So, at a slightly higher distance around, if this was r 1 then around so, if this first shell

the peak was at r 1 at a distance and approximately r 1 plus sigma by 2 distance, you are

going to find a minima; because not you would not find the center of other particles at

that distance.

But at  the position of r  2 suppose,  which is  the second neighbor shell.  So, which is

basically the second range of neighbors, so you have a range of parts, this is your first

range of neighbors and you would have suppose a more neighbors somewhere sitting

here right; so, which is the second range of neighbors. For this particle this would be the

first range of neighbors, but for this particle this is the second range of neighbor, you will

find a large number of particles around distance r 2. Of course, they are going to move

around they want to fluctuate their position in space and for that you will see a peak.

Similarly this speak if you have one, then it corresponds to a third range of neighbors. Of

course, if the density of the liquid is lower, then this peak will also be lower, because you

are  going to  find  fewer  number  of  particles  at  distance  r  1  and a  fewer  number  of

particles at a distance r 2. And at large distances here, right at large distances what you

will find is basically that it goes to one, there are no correlation; so on an average at very

far distances or at all distances there is an equal probability.

So, the way pair correlation function is calculated, is basically you look at count on an

average, the number of particles that you have between r 1 and r 1 plus d r that is within

a shell. Then you divide it by the volume of the shell, because as you go farther and

farther away though your d r remains the same, the volume of the shell is 4 pi r squared d

r

So, if you are going to larger distances, when r is large 4 pi r square. So, basically the

volume of the shell increases, right. And if you have a large volume of a shell, then you

are  likely  to  have  a  larger  number  of  particles  as  well  within  that  volume.  So,  to

normalize it, to compare across distances what you calculate is; you normalize this d N,

which is the number of particles between N between r 1 and r 1 plus d r and you also

normalize  by the  volume of  the shell,  right.  Because  you are  calculating  how many

particles  are  there,  what  is  the  density  of  particles  at  a  distance  r  that  is  what  pair



correlation  function  is  giving  you,  what  is  the  average  number  of  particles  if  you

integrate. 

So,  if  you integrate  over  the  volume of  the  shell,  you will  get  the  total  number  of

particles which is within the shell at a distance r 1 yeah and you normalize by the each

volume of the shell. So, that on an average you can figure out oh, at certain distance r 1 I

have a peak which means there is a high number of particles around it, at a slightly larger

distance r 1 plus sigma by 2 we have a low number of particles around it. Low density of

particles you are normalizing, because if a larger shell you might end up having larger

number of particles;  but density  is  lower,  and finally,  you normalize  by the average

density.

So, that at large distances r large, you can basically this g of r goes to approximately 1.

So, then when if you have over large distances, you will lose any correlations unless you

are very near the critical point. And for liquids this will basically go to 1, because it is

normalized by the average density; it will any particle at far distances will see an average

density, it would not have these correlations.

Now if this liquid was, if the density of the liquid is decreased; then what you will find is

the peak will go down or rather if you increase the density of the liquid, then the this

peak will increase and you will have a higher peak, the second peak and the third peak

and so on so forth. It also depends upon the temperature, how will far the correlations

can be seen, but always at large distances for a liquid, for a fluid that is a liquid or a gas,

you will go the see that the correlations have gone to 0.

By the way whenever I say, distances, large distances please you have to keep in mind

that the largest distance that you can calculate is L by 2, which is half the length of the

box. Technically root 3 by 2 if you measure along the diagonal, but typically you do not

plot r larger than L by 2; where l is the length of the box, the size of the boxers as so

assuming a cubic box. 

And, if the box is not cubic, if L 1, L 2, L 3 that three different sizes are different, then

you would typically plot up to the smallest dimension of the box by 2, right. And why is

that?  Because  that  is  because  of  periodic  boundary conditions,  so whenever  you are

calculating r; you have to also keep in mind that two particles could be at two ends of the



box and yet be very close to each other, while calculating due to the minimum image

convention.

So, whenever you calculate r, when you draw concentric shell and calculate how many

particles are there around my shell; remember as the shell grows bigger and bigger, you

have to account for particles which are on the other side of the box. right. Specially, if

this particle is somewhere sitting, suppose this particle is sitting somewhere. So, this is

your simulation box see right and if it is here, then definitely this particle could be some

close to some particle here. So, you have to be careful of that.

So,  going;  so  while  you have  to  develop  the  algorithm to  calculate  pair  correlation

function; we shall just tell you that for the pair correlation function you shall need an

array  of  length  which is  essentially  decided by d r;  d  r  is  what  is  the width of  the

concentric shell. 

And suppose the size of the box assume a cubic box for simplicity is supposed 30, then

basically L by 2 is 15. And the length of this array by in which you shall store the values

of g r while it is being calculated will be 15 or L by 2 divided by d r. right. Because that

distance you are going to; half the length of the box, the maximum distance you are

going to divide it into small little segments of width d r.

So, the length of this array in which you shall store the pair correlation function will be L

by 2 divided by d r. And so, in this different boxes of the array, different indices of the

array 1 2 3 4 so on so forth. So, what are you going to store; basically when the index for

the array is 1, basically you store and how many particles are there between 0 and 0.5.

For in the end; when index for the array the index is 2, you basically store how many

particles you find between 0.05 and 0.1; when the array is 3, you basically store how

many particles you store between you can find on between 0.1 and 0.15 and so on.

Now, if you have a liquid, you know that this the values of n 1 and n 2 and n 3 will be 0;

till  approximately  the value  of  sigma.  So,  write  only when you find.  So,  it  is  much

further down where basically you are checking how many particles are there in distance

between 1 and 1.05, so which is somewhere here; that is where you will find a finite

number of particles.



Now you have to calculate this array for each particle, then you have to average basically

you, there should be another array where you shall call average g of r or whatever right,

and there you shall similarly add all these numbers for another particle, and so on so

forth for every particle. 

So, then you will have an average g of r, g of r is anyway the pair correlation function g

of r is anyway an average quantity; nobody is typically interested to know what is going

on around one particular particle, it is an average quantity. And so, you have to average

over all the particles in this array keep on storing for each particle, the end you have to

divide  by  the  total  number  of  particles  to  get  an  average  g  of  r  at  one  particular

microstate.

And then as you allow the system to evolve, say you can and the system will access

different  microstates  due  to  it  is  time  evolution.  And  then  what  you  do  is  at  each

iteration, every 50 iteration say; because one iteration to the other the positions will be

rather correlated, it would not be an independent microstate because the particles would

have moved only a little  v bit,  right.  So,  after  say around 50 iterations  or  after  100

iterations where the, so that the configuration of these particles are slightly different; you

reach another microstate, independent microstate and then again this value of g of r, you

add this array to another calculated value of g of r, so that you can take a time average,

right.

So, time average is basically not very different from what we are doing in a Monte Carlo.

You are doing, you are basically calculating some quantity at a particular number of

iterations and then that quantity after again a certain number of iterations and again in the

value of that quantity, again after certain number of iterations and at the end you were

adding all these things up and dividing by the number of snapshots, right.

Here the same thing you are doing except that you are doing it for an arrays. So, it is a

long array and when you have to plot, you plot basically this average values of N 1, N 2,

N 3, N 4, N i, N i plus 1, particle average and time averaged versus distance. Because

your first one, this one in to d r will say how many particles are there in; how many

particles are there between 0 and 0.5.

Similarly if you multiply the eighth or ninth or i th index of the array by d r right, that

will tell you how many particles are there in that box and so on so forth ok. So, that is



how you calculate  pair  correlation  function  that  will  be  given as  an  assignment  for

different densities. And you should see that if you decrease the density, then this peak,

the position of this peak also keeps on decreasing.

And  so  that  when  it  is  a  gas  right,  it  is  really  dilute,  then  you  basically  the  pair

correlation one function beyond distance sigma becomes practically equal to 1. So, here I

have shown, so very small peak and thereafter it becomes practically one here all over

and if it is a real gas it would be 0 up till distance 1 and 1 onwards.

So, for r equal to 1 and after r equal to 1 the value of g of r will remain 1 from r greater

than 1 to all large distances this is half the length of the box. What does that mean; that

means, that the probability of finding a particle at any distance greater than r equal to

sigma is the same; it is an average density, there are no local spatial correlations as seen

in a liquid. In fact, microscopically that is how you differentiate between liquid and a

gas;  because for  a  gas  the  pair  correlation  function  for  r  greater  than  sigma will  be

absolutely equal to 1, ok.

(Refer Slide Time: 36:11)

So,  what  about  the  next  quantity  this,  if  you have  understood how to  calculate  pair

correlation  function;  then  calculating  the  Maxwell  Boltzmann  speed  distribution  is

should be a cakewalk. Because in the Maxwell Boltzmann speed distribution where the

probability  density function P v is,  this  is  the form which you can check from your

statistical mechanics book. And if you plot it, this is how it looks right; there has to be



something missing here, and I had missed v square even here, if I am calculating the

speed distribution, ok.

And because this quantity is an exponential with increasing v, it is sharply falling; but v

square is an increasing function you get a peak, right. And it is not a symmetric function,

speed cannot be less than 0, so it has to start from 0 to larger and larger values. And

when I say that you have to calculate P v in the computer simulations, this again means

that  the  particles  are  moving  around  in  space,  they  are  colliding.  Hence,  they  are

exchanging velocities with each other, there is momentum transfer from one particle to

the other. So, hence the particle; each particle will keep on changing it is speed as it

moves along.

Moreover, on an average different particles will be moving with different speeds and of

course, velocities itself. So, on an average to calculate P v, you have to calculate how

many particles d N, how many particles d N are moving with speeds between v and v

plus d v, right. So, what is v; v is nothing but v x square plus v y square plus v z square

root, and just as previously, just as in pair correlation function; you have to average over

different times, right.

So, you allow the system to evolve as the particles move around every 50 iterations or

every 100 iterations depends upon the value of d t.  As soon as you have a different

different microstate of the system; you calculate for a particular microstate, how many

particles are moving with velocity v and v plus d v. And of course, this d N quantity you

averaged over different microstates at different time.

So, finally, you keep on adding an array at the value of d N 1, 2, 3, 4, 5, 6 for different

values of velocity and each value you calculate at different times, average them divided

by the total number of snapshots; not very different from what we did in Monte Carlo or

the previous step.

So, here you will again have an array where the first index of the array will store how

many particles are moving with speed 0 and 0.05. So, suppose d v is 0.05 and then how

many particles are moving with speed between 0.05 and 0.1, how many particles are

moving with speed between 0.1 and 0.15 and so on so forth.



So, again what will be the size of the array? Because you have to initialize it, how can

you estimate it. Now we were working with essentially K B T equal to 1 and mass equal

to 1.  And you know that  the position of this peak of the Maxwell  rules wind speed

distribution is root 2 K B T by M, right, so this point, if K B T is 1 and M equal to 1, so

the position of this peak will be at root 2, right.

Now, if the temperature changed, so if the temperature became less then what you would

get of course, then the peak will also shift, so though you will get a different Maxwell

Boltzmann distribution. So, here this data, this one is for essentially temperature T 1; the

one with dots where this one is with temperature T 2, where T 2 is greater than T 1.

And of course, the probability under the curve which is P v d v right, as to be and the

some of it has to be 1 because it is probability, right. This is probability density function;

that is probability divided by d v, right What is probability? It is number of particles

moving with velocity v 1 and v 1 plus v or v plus d v divided by the total number of

particles on an, this N will be fixed, this d N is the quantity whose average you have to

calculate; and then all that you have to do is basically divided by d v, which will give

you the probability density.

Because, if you chose d v to be smaller, say instead of 0.05 you chose it to be 0.001; then

you are going to find a lot fewer number of particles between 0 and 0 0 1, right. Because

all the particles then suppose N 1 was the number of particles, an average number which

was moving with velocity with speed between 0 and 0.05.

Now if you choose your d v to be 0.01 say, then this N 1 particle will be divided into 3,

into  five  partitions  right;  because  now  you  are  calculating  how  many  particles  are

moving between 0 and 0.01, 0.01 and 0.02, between 0.02 and 0.03. If we add up all these

numbers, the average from point from 0 to 0.05, then you will get. So, you have to divide

by d v, be aware of that, right.


