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So, now we have we need to use two problems. One is this... let me just clear this.



(Refer Slide Time: 00:24)

So, if I do ls, so, my relevant files are these ones which is my main program and then this

one which is my the Fortran subroutine which are the part of the lab excel routine which

does the diagonalization.  So, now in remember in order to compile this program this

particular subroutine this dy dsyev this remain requires some other subroutines also, let

me see where it is written.

(Refer Slide Time: 01:01)

So, see for example, here it requires this particular subroutine and if I go down it will

require another subroutine and so on and so forth.
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So, these subroutines are part of the BLAS library. So, you need to have a pre installed

BLAS in your machine in order to compile this code and the way the compilation is done

is in the following way. So, again I am using gfortran as my compiler. So, let me just

clear the screen.
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So, I am using gfortran as my; so, gfortran is my compiler. So I write gfortran minus o

the compiled output is stored in this file pwell dot x, then the name of the main program

which I want to compile name of the subroutine which I am I will be using to diagonalize

this matrix and this particular subroutine needs to be linked to your blas library. So, that

is done in the following way. So, minus L is the command and then minus L and then

you have to still where the compiler where this blas library is.

So, in my machine it is stored in slash user slash local slash lib and then you link that

particular. So, you go to that particular directory and then link the blas and then you

compile it. So, my compilation is done and this is the output file it has produced where

the executable is.
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Now, let us run this and see what we get. So, if I run it; so first of all it asked me for

these parameters for this potential well that is V 0 and b.

So, let me choose V 0 to be 1 and my b to be 2. So, the depth of my potential is minus 1

and the width is 2. So, if we do that, so the code reads in and then prints out these values

then it asks me the parameters for the plane waves that is a the periodicity and n which

determines the number of plane waves. So, let me start with a small value of a and let me

start with say a small value of number of plane waves that is this 5 n 5.



So, now if you see here, it does the job and then it prints out the lowest eigenvalues. So,

let us look at the lowest eigenvalue 3 eigen values. So, what you see is that the lowest

eigenvalue is minus 0.52, then the next one is 1.19 and then the next one is 1.24. So, if

you remember the potential which I am using that is a attractive potential. So, we should

have at least one bound state. So, and that is what; so what from our solutions what we

see is that we can we are getting one bound state and then there are two unbound states

here.

So, now let us see how the values of this wave eigenvalues change if we increase the n

that is the number of plane waves. So, remember when I am choosing here n equals to 5

here when I am giving an input n equals to 5 the number of plane waves is actually 11

ok. So, let me keep the width, the periodicity  of my plane waves to be same, but instead

of 5 let me go to 10 say.

So, n value I go to 10. So, what it means is that I have 21 plane waves now and if I run

my code, so, you see the eigenvalues are changing. So, the new eigenvalues which I get

is minus 5 0.521155 which is lower than this particular eigen value which I get when I

use 11 plane waves here.

If I reduce it, increase the number of plane waves further and do it, so then I see that my

eigen value is the ground state, the lowest energy eigen value it reduces further and if I

go to say 20 then you see there is still a slight reduction here. So, the question is, is this

the correct behaviour which we expect.

So, to understand this ok, but before we go to that questions so, another thing which I

have like to point out is that see for all the cases the norm of the potential norm of the

wave function is always 1, its approximately very close to 1.

So, what I have done here is ok. So, now, let us try to understand the behaviour of my

potential behaviour of my energy eigenvalues that is this quantities here as a function of

the number of plane waves.
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So, let I have taken this data and then plotted it and let me just show you the result.

(Refer Slide Time: 06:29)

So, what I have done is I have varied the number of plane waves starting from value

which is 11 to a of value which is 51 and I have plotted the energy as a function of the

number of plane waves.

So, you see as we go to higher and higher plane values of this plane waves my energy

goes down and then gradually the differences between energy say for example, in this

case with 21 and 31 this difference is smaller than say for example, 11 and 21 and as we



go to higher and higher plane waves this energy difference gradually goes down, it dies

down.

So, the question is why are we getting this type of a behaviour. Remember what the basic

principles of quantum mechanics that we have used in order to develop this method. So,

this is based on a variational principle. So, what variational principle says that the more

and more number of wave functions you use in your expansion of the wave functions

that is more and more parameters you have that my parameters of the coefficients the

closer and closer to the actual ground state you will go.

So, what it means is that the energy whatever energy eigenvalue I compute or whatever

energy of my system I compute that will always be higher than the actual ground state

energy. So, when you add more and more number of bases in your plane in your wave

function  expansion  in  this  case  we  are  doing  a  plane  wave  expansion  of  the  wave

function. So, you will slowly go towards the ground state that means, your energy will

slowly, the total energy will slowly go down and in the limit where it is converged then

you will not see any significant change in energy.

So, that is why as the function of the number of plane waves if the code if everything is

correct,  then you should always expect that  your energy is  energy should always go

down. So, this is one thing and then the second thing which we would also like to check

is how does the things change when you increase the periodicity  of my of the plane

wave. So, again I would before we see the results, so, I will just recollect what we have

discussed regarding the periodicity of the plane waves.

So, because we are using these plane waves and we which has a finite periodicity, so,

what we have is instead of just a single attractive square well potential we have periodic

replicas  of that  ok.  So, what  it  means is  that  now I am not simulating  or doing the

calculations for potential which is 0 everywhere except between minus p by 2 to plus p

by 2 instead I am doing a calculations for a potential which has a nonzero value say at

around so, minus b by 2 to plus b by 2 and then again a nonzero value from minus b by 2

plus a 2 plus b by 2 plus a; similarly a nonzero value from minus b by 2 minus a 2 plus b

by 2 plus b by a. So, these values these potentials which are fictitious potentials in our

case because actual potential has nonzero value only between minus b by 2 and plus b by

2. So, these are called periodic images.



So, the correct picture, so, when I will the periodicity of my plane waves that is this if

this a is only when the a is infinitely large, then only the distance between the periodic

images and the actual potential that will be large and I will be simulating a correct the

actual potential. So, therefore, it is important to understand how my results will change

as a function of this a value and what is a sufficiently large value of a.

So to do that what I will do is I will now rerun the code by changing the values of a that

is this parameter with a fixed value of the number of plane waves. So, since from that

figure which we had drawn which we had here, so, we see that it roughly converges say

between 41 and 45 things do not change much. So, what I will do is I will just run the

code with varying the value of. So, I will start with a equals to 5 and my number of plane

waves n value of n to be 40 and I will just run the code ok.
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So, this is what I get for the eigen values. Now, what I will do is I will increase my a say

let me go from 5 to 10 the value of a, I keep the number of plane waves to be same and

then I run it again. So, what you see is if you look at the energies now the lowest the

ground state energy, so, when my a is equal to 5 that means and if you compare that with

the value when my a equals to 10, so, what has happened here is when I go from this



particular  case to  this  particular  case the  distance  between the periodic  images  have

increased.

What it means is that now the interaction between the two square well potential have

reduced. Now, if you remember the potentials which we are using these potentials are

attractive  potentials.  So,  when  you  bring  two  attractive  potentials  together  the  their

interaction  will  also be attractive.  So,  when you move them apart,  so,  what  we will

expect is that the energy eigenvalue the energy will go higher up in energy.

So, and that is what we is find here. So, for 5 the my energy is for a equals to 5 my

eneryg is 0.52177, but the moment I change a or increase a to 10 my energy goes to

0.456413. Now, if I change a further to 15 we will see that the energy goes much higher.

So, now, from 0.456 point minus 0.456413, it goes to minus 0.453836; if I go to larger

value it will go even higher.

So, actually what one needs to do is one needs to systematically increase the value of a

and see that at what value of a the energy does not change beyond a certain threshold.

So,  that  value  of  a  will  be the  correct  value of  a  to  describe  my system within  the

periodic boundary conditions. So, let me show you a plot of that what happens.
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So, this plot shows the variation of the total line of the ground state energy as a function

of the periodicity of my plane wave which is a here and the number of plane waves I



have used here is 51 in this for each of these calculations. So, as I was showing when

running the code. So, when I start with a small value of a; small value of a that means,

the potential actual potential is interacting with this periodic image and the ground state

energy is lower and then as I gradually increase the value of a, so, from example if I go

from this point to this point to this point, so what is happening as I move towards the

right?  The  separation  between  the  potential  and  its  periodic  image  is  increasing,

therefore, their interaction is decreasing they do not see each other much. And as a result

the energy goes high and then beyond a certain value you see there is not a significant

change in the energy as I increase a.

So, a good choice of the value of a will be something around say 25 units here in this

picture. So, now, let us look into how my wave function look like. So, if I open the now

if I open the input the output file which I have here where I am stored my wave function.

(Refer Slide Time: 15:22)

So, you see there are 4 columns here. So, the first column this is this column contains the

value of x; the position, this column contains the value of the probability density and this

column  contains  the  real  part  of  the  wave  function  and  this  column  contains  the

imaginary part of the wave function. So, if I plot the same thing, so let me just show you

the plots.
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So, here what I have plotted in this figure is the real part of the wave function for three

values of a. So, let us see with along the as a function of x here.

Now, this vertical lines here I am sorry with this should be the vertical lines should be

here at x equals to this vertical lines should be at x equals to 1 because my total b is 2

and I am my wave file the potential is symmetric from minus b by 2 to plus b by 2. So,

this vertical lines here actually should be at 1; let me just see if I can correct it ok. So,

this is the same potential the actual raw data.
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So, but before that let me just double check the code what we have done. It should be

minus 1 to plus 1. So, what one should do is basically let me just quickly modify this;

this will be minus 1 minus 1 except this will be plus 1 ok. So, let me just print it again.

So, let us see if the file has been created.

(Refer Slide Time: 18:10)

So what we can do is let me just go back and now let me close it and open it again, this is

fine. So, as I was saying. So, this vertical lines here denotes the width of my potential.

So, the total width of my potential is 2 that is the value of b. So, this is the value of b

which is 2 units and it goes from minus 1 to plus 1.

Now, I have plotted here the wave function; this is the real part of the wave function, the

imaginary part is 0 in this case as a function of the periodicity of the plane waves which

we are using. So, for three values of that, so a equals to 5, 10 and 15.

So, what you see for a equals to 5? Your wave function is significantly different from

that of a equals to 10 and 15 which is which are this blue and the green lines here. So,

what you see is that the wave function has not decayed by the time it reaches from the

end of the periodic box. So, here my box the total value of a is 5; so, it goes from minus

2.5 to plus 2.5. 

But as I gradually increase the value of a, so, you see that its going slowly going down to

0. And not only that so, if you remember my wave function should go exponentially to 0



if  in  the  actual  case.  So,  if  you  look  at  that  now  the  slopes  of  the  wave  function

corresponding to a equals to 5 and a equals to 10 and a equals to 15.

So, you see that a equals to 10 and 15 the slope in this region outside the this outside my

potential that is on the left hand side of x equals to minus 1 or on the right hand side of x

equals to plus 1 the wave function decays much faster.

So, if I use a larger box, so I will expect it to go in a much quicker way to the 0. So, this

is something one should be careful of and another question is so, if we look into the

results as a function of a, so, why does the energy goes up? So, the reason the energy

goes up here is because I am reducing the interaction between the periodic images and

my wave function is attractive potential.

If my wave function is a repulsive potential then what I would see is that the energy will

come down as I move the as I increase the separation between the wave functions of

between the actual potential and its periodic images.
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So, this is an example of how you can solve numerically the problem the Schrodinger

equation corresponding to a given attractive potential here in this particular case and that

attractive potential happens to be a square well potential with a finite depth. How you

can use the matrix formulation of quantum mechanics and then convert your Schrodinger

convert your problem of solving the Schrodinger equation which is a problem of solving



a second order differential equation to a linear algebra problem and then diagonalize that

and then get the eigen values and the eigen functions corresponding to the ground state.

So, though in this example I mean and in this lecture we have discussed only about plane

waves, but there is no necessity that it has to be a plane wave. This method also applies

for the case when you use for example, a localized basis set. For example, if you use

atomic orbital’s to solve your, I mean Schrodinger equation. So, then also this method

applies equally well. In that sense this method is a much more general method.


